BEAM CURRENT MEASUREMENTS WITH LOGARITHMIC CONVERTER

C. Jamet, E.Petit
Ganil, BP5027,14076 Caen Cedex

A new electronic device to measure low current has been developped for the new projects THI (Hight Intensity Transport) and SPIRAL at Ganil.
This electronic device gives a voltage proportionnal to the current logarithm. An analog to digital conversion of the voltage is realized. A calculation with the inverse logarithmic equation gives the current value.
The advantage of the logarithmic measurement is its possibility to measure a large scale without range changing. Developments and tests are now in progress to measure currents between picoamp to milliamp.

1 Principle of the logarithmic conversion

The logarithmic conversion uses the diode caracteristic. The current-voltage characteristic of a diode is given by:
$I d=I s\left(e^{\frac{V d}{U / t}}-1\right)$

Id : diode current
Is : reverse saturation current
with $I s=B T^{3} e^{\frac{-E_{g}}{K T}}$
Eg: band gap
Vd : diode voltage
$U t=\frac{k T}{q}$ with k : Boltzmann's constant
T : absolute temperature (K)
q : electronic charge $\left(1,610^{-19} \mathrm{C}\right)$

The used structure consists in connecting two diodes, with opposite polarities.

We find :
$I d=I s\left(e^{\frac{V d}{U t}}-e^{\frac{-V d}{U t}}\right)$
$V d=U t \times \ln \left[\frac{1}{2}\left(\frac{I d}{I s}+\sqrt{\left(\frac{I d}{I s}\right)^{2}+4}\right)\right]$
If Id/Is $\gg 2$
$V d \cong U t \times \ln \left[\frac{I d}{I s}\right]$

2 Two types of devices are used at GANIL.

2.1 Input stage with diodes upstream

$\mathrm{Vl}=11 * \mathrm{Vdl}$
The advantage of this kind of device is to heavily filter low currents. In parallel the capacitance of the cable and the input equivalent resistance of the electronic realize the filtering.
The disadvantage is that response time for low current becomes very long.

2.2 Input stage with diodes in feedback

$\mathrm{V} 1=-\mathrm{Vd}$
The response time is shorter than previous electronic, but it is more sensitive to electronic perturbations.

3 Layout of the electronic converter

4 Equation of converter

$V 3=k \times(V 1+V 2)$
$V 3 \cong k \times 11 \times U t \times\left(\ln \left(\frac{I}{I S}\right)-\ln \left(\frac{I O}{I S}\right)\right) \cong K \times U t \times \ln \left(\frac{I}{I O}\right)$
An electronic compensation corrects the effect of temperature on Ut and gives the gain $2 \mathrm{v} /$ decade.
$V 4 \cong 2 \times \log \left(\frac{I}{I O}\right)$
Io : reference current (equal to 10 nA or 100 nA)
For the device with diodes in feedback we realize the same characteristic $\mathrm{V} 4=\mathrm{f}$ (I).

V 4 is include between -10 v to 10 v , so we can measure 10 decades of current.

5 Converter characteristic $V=f(I)$

For the logarithmic converter dedicated to SPIRAL, $\mathrm{Io}=10 \mathrm{nA}$ and the theoritical characteristic is as shown on the figure.

In practice, Ibias (amplifier bias current) and Is (reverse saturation current) make non-linearity in very low current $(<10 \mathrm{pA})$. For the high current $(\mathrm{I}>100 \mu \mathrm{~A})$ the resistance Rs of diode causes a non-linearity.

For the chosen diode (DPAD5 from TEMIC) we measure for $\mathrm{T}=25^{\circ} \mathrm{C}$:
Is $\cong 27 \mathrm{fA}, \mathrm{Ut} \cong 27 \mathrm{mV}, \mathrm{Rs} \cong 55 \Omega$
For the amplifier (OPA 129 from BURR-BROWN) we measure :
Ibias $\cong 117 \mathrm{fA}$
These values depend on the temperature.
6 Current calculation

As seen before, the characteristic $\mathrm{V}=\mathrm{f}(\mathrm{I})$ isn't linear on the whole scale. We have a non-linearity for low current ($\mathrm{I}<10 \mathrm{pA}$) and hight current ($\mathrm{I}>100 \mu \mathrm{~A}$). The theorical equation $\mathrm{V}=2 * \log (\mathrm{I} / \mathrm{Io})$ and the inverse equation ($\mathrm{I}_{\text {calculated }}=\mathrm{Io}^{*} 10^{\mathrm{V} 4 / 2}$) can't be used.

The selected solution consists in realizing a conversion table. Values of this table are located in an EPROM on the VME board.

7 Conversion table realization

To realize this table, we must acquire the caracteristic $\mathrm{V}=\mathrm{f}(\mathrm{I})$ of each electronic converter. A test bench acquires values automatically.

Test bench description

We acquire 1000 measurements of the characteristic $\mathrm{V}=\mathrm{f}(\mathrm{I})$. We choose an average characteristic and a computer program calculates the characteristic $I=f(V)$ with 4096 points. We use an analog to digital converter with 12 bits precision $\left(2^{\wedge 12}=4096\right.$ values $)$.
We put the values in an EPROM on the VME board.

The microcontroller of the VME board acquires four voltages every $750 \mu \mathrm{~s}$. For all the values, the microcontroller calculates the corresponding currents, averages 400 current values and puts the result in the double access memory.

In practice, with the non-linearity the current can be measured between 0.3 pA to $400 \mu \mathrm{~A}$.

8 Characteristic $V=f(1)$ of 25 converters

The different converters, for the same room temperature $\left(25^{\circ} \mathrm{C}\right)$, have different characteristics for low current. Theses light differences are due to different values of Is.

9 Precision of the current calculation for 25

 convertersA comparaison of the reference current and the calculated current gives the precision of calculation with the microcontroller.

The precision for the low current ($\mathrm{i}<10^{-10} \mathrm{~A}$) decreases because diodes have different characteristics.

10 Influence of the offset voltage

The equation of the converter is
$V \cong 2 \times \log \left(\frac{I}{I O}\right)$
and the inverse equation is :
$I_{\text {calculated }} \cong I_{0} \times 10^{\frac{V}{2}}$

If we have a offset voltage with V :
$I_{\text {calculated }} \cong I_{0} \times 10^{\frac{V+V \text { offset }}{2}}$
$I_{\text {calculated }} \cong I_{0} \times 10^{\frac{V}{2}} \times 10^{\frac{V_{\text {offset }}}{2}}$
$I_{\text {calculuted }} \cong k \times I_{0} \times 10^{\frac{V}{2}}$
A difference of voltage gives, when we calculate the current, a multiplication factor. So it's very important to tune exactly the offset and the gain of the logarithmic converter.

11 Response time

The response time is due to the capacitance of the cable and the equivalent input resistance of the electronic.
This resistance depends on the current value.

A chopper cuts the beam, a pulse of current during 0.8 ms is received on a faraday cup.

The response time increases when the current value decreases.

13 Charge state distribution of the experimental
source
An exemple of measurements with logarithmic converter is given in the next figure.

We can see on the same curve different charge states which have maximum value completely different.

14
 Conclusion

Logarithmic converters can measure current on a very large scale (10) decades) without range changing. The precision is about $+/-2 \%$ on the scale except for the current $<10 \mathrm{pA}$. A filtering, with the cable capacitance and the equivalent input resistance, increases when the current decreases.

