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Abstract
Recent theoretical investigations of beam crystallization

using computer modeling based on the method of molec-
ular dynamics (MD) and analytical approach based on the
phonon theory [1, 2, 3] are motivated by the study of col-
liding crystalline beams [4]. Analytical study of crystal
stability in an alternating-gradient (AG) focusing ring was
previously limited to the smooth approximation. In a typi-
cal ring, results obtained under such approximation largely
agrees with that obtained with the MD simulation. How-
ever, as we explore ring lattices appropriate for beam crys-
tallization at high energies (Lorentz factor γ much larger
than the transverse tunes νx, νy) [5], this approximation
fails. Here, we present a newly developed phonon the-
ory in a time-dependent Hamiltonian system representing
the actual AG-focusing ring and predict the stability of 1D
crystals at high energies. Luminosity enhancement is illus-
trated in examples of rare-ion colliders based on ordered
1D strings of ions.

INTRODUCTION
It is well-known that to create a crystal, two conditions

need to be satisfied. First, the storage ring must operate be-
low the transition energy so that the particle motion is in a
positive-mass regime. Second, resonances between the os-
cillations of a crystal and the AG-focusing lattice structure
must be avoided so as to prevent heating and thus destruc-
tion of the crystal. This requires that the phase advance per
lattice period must not exceed 127◦ (in practice not more
than 90◦ [6, 7]).

In this work, we are motivated by the desire to collide
one ion crystal with another or to collide an electron beam
with an ion crystal. We desire to do so because in such col-
liders the usual beam-beam limit can be greatly exceeded.
The usual limit is roughly a change in tune, Δνbb of less
than 0.01, but for a crystal the limit (destruction of the
crystal or an ordered avoidance of ions colliding) occurs
for Δνbb ∼ 1. Since the luminosity varies as the square of
Δνbb, the enhancement is of the order of 104.

Colliders are of significant interests at high energies.
So, the very first question we want to address is can we
make crystals at high energy. We shall show that the an-
swer is positive. Then we go on to explore lattices appro-
priate for high energy and, in particular, low-momentum-
compaction compact lattices where the transverse tunes are
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relatively low, i.e., γ−2
T � ν−2

x . These lattices can not
be described by the smooth approximation based on which
previous phonon theory was developed [3]. We develop a
new formalism appropriate for studying 1D crystal stabil-
ity in general AG lattices. In comparison, we study both
1D and multi-dimensional high-energy crystals using the
MD method. Finally, we present examples of ion-ion and
electron-ion colliders with 1D ordered ions.

COLLIDING-BEAM HAMILTONIAN

The rest-frame motions of particles interacting through
the Coulomb fields are governed by the Hamiltonian [8]
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where νx and νy are the transverse tunes, γ is the Lorentz
factor, and the summation extends over all particles l in
the beam traveling in one direction. In Eq. (1), all canoni-
cal variables are scaled as dimensionless by expressing the
time, t, in units of ρ/βγc, the spatial coordinates x, y,
and z in units of the characteristic inter-particle distance

ξ ≡ (
r0ρ

2/β2γ2
)1/3

, and the energy in units of β2γ2e2/ξ,
where βc is the velocity of the reference particle, r0 is its
classical radius, and ρ is the bending radius of the ring un-
der the dipole magnetic field. The Coulomb potential is
given by

VC =
1
2

∑

� �=m

1
|r� − rm| , (2)

where

|r� − rm| =
[
(x� − xm)2 + (y� − ym)2 + (z� − zm)2

]1/2

.

Interaction with the colliding beam occurs once per lattice
period in a very short time, so it is treated as a lumped kick
in momentum. The kick on particle l can be represented by

Vbb =
∑

j

(1 + β2)γξ

ρ
√

b2
min + b2

lj

(3)

where b2
lj = (xl − xj)2 + (yl − yj)2 is the square of the

transverse separation and bmin = (1 + β2)r0/(4β2γ2ξ) is
the minimum separation in the beam rest frame, and the
summation, j, is over all the particles in the opposite beam.
We find that if the kick is large comparing with that of the
crystalline space charge, then the ground state is two crys-
tals separated in space at the crossing point; i.e. there are
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no overlapping. If, however, the beam-beam effect is not
too large then the two crystals do overlap and beam-beam
nuclear interactions can occur.

A convenient measure of both the beam-beam and the
space-charge forces is given by assuming a uniform charge
distribution within the beam. This is usually an under-
estimate of the actual space-charge and beam-beam forces
when the beam is crystallized. Let R be the average radius
of the machine, β∗

xy be the β values at the crossing point,
NB be the number of crossing per revolution, N0 be the
number of ions per bunch, λ0 be the peak number of ions
per unit length, and a be the full transverse radius of the
bunch, we have:

Δνsc =
−λ0Rr0βxy

β2γ3a2
, Δν

bb
=

−NBN0(1 + β2)r0β
∗
xy

4πβ2γa2
(4)

Fig. 1 shows an example of colliding multi-shell crystals
obtained by computer simulation based on Eq. 1 using the
MD method [4].

Figure 1: Formation of colliding crystalline beams with
1000 macro particles in each beam. The space charge
tune shift Δνsc = −3.8 and the beam-beam tune shift
Δνbb = 0.27. The crosses correspond to one beam while
the circles correspond to the other. φ is the polar angle.

LATTICE FOR HIGH-ENERGY CRYSTAL
To form crystals at high energy for enhanced luminos-

ity, we explore ring lattices with high (γT � νx,y) or
imaginary (γ2

T < 0) transition energy. A low-momentum-
compaction lattice (i.e., γ−2

T � ν−2
x ) that satisfies the

maintenance condition is shown in Fig. 2. The short,
negative-bend dipoles at the high-dispersion region com-
pensate for the long, regular dipoles at the low-dispersion
region. Such lattice was proposed in 1955 to avoid transi-
tion crossing [9]. A variation of the structure was recently
proposed for the Fixed Field Alternating Gradient (FFAG)
accelerator. The cell phase advance is kept below 90◦ [10].

THEORETICAL APPROACHES
Theoretical investigation of crystal stability mainly con-

sists of three methods all based on the beam-rest-frame
Hamiltonian. The first is phonon spectrum analysis under
the smooth approximation of the machine lattice [3]. The
second is generalized phonon spectrum analysis for the ac-
tual machine lattice. The third is computer simulation us-
ing the MD method for the actual machine lattice.
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Figure 2: Imaginary-γT negative-bend lattice with 87◦ hor-
izontal phase advance. The middle (positive) bend is of
combined-function (dipole and defocusing quadrupole).

Phonon Theory under the Smooth Approximation
The analysis is based on linearized Coulomb forces

around the equilibrium positions of the particles. Write
the spatial coordinates of 
-th ion in a crystalline state as
(X�, Y�, Z�),

x� = X� + δx�, δx� = x̃� exp [i(ωt − kZ�)] ,
y� = Y� + δy�, δy� = ỹ� exp [i(ωt − kZ�)] ,
z� = Z� + δz�, δz� = z̃� exp [i(ωt − kZ�)] .

(5)

When there are N particles per unit cell of length L, we
obtain the linearized equations of motion in a storage ring,
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where

R�mn =
√

(X�−Xm)2+(Y�−Ym)2+(Z�−Zm−nL)2


 = 1, . . . , N , and R�mn = 0 term is excluded from the
double sum. A computer algorithm was developed to ob-
tain the eigenvalues of the system for a general crystalline
structure beyond 1D, Practically, systems of up to N = 50
particles per MD supercell were studied.

For 1D crystals, N = 1, Eqs. 6, 7, and 8 can be solved
analytically. The phonon bands are calculated as

ω2
1 =

1
2

{
ν2

x+Ω2+
√

(ν2
x+Ω2)2−8Ω2 (ν2

x−γ2−Ω2)

}

ω2
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ω2
3 =

1
2

{
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x+Ω2−
√

(ν2
x+Ω2)2−8Ω2 (ν2
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}(9)

where

Ω2 = 2
∞∑

n=1

1 − cos(kn/Λ)
(n/Λ)3

≥ 0 (10)

with Λ being the scaled dimensionless line density defined
by Λ = N/L, and the wave number k varies from −πΛ to
πΛ. The actual line density λ in the laboratory frame can
be related to Λ as λ = Λ/(γξ). The 1D structure is stable
if all the eigenvalues are real for any k.

Fig. 3 shows the stability of 1D crystalline beams at dif-
ferent line densities as functions of the beam energy. Sta-
ble 1D structure exists for energies up to a threshold γth

corresponding to the transition energy of the machine, i.e.,
γth = γT = νx. For energies below transition (γ < γth),
there exists a threshold density beyond which the crys-
talline structure is beyond 1D.
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Figure 3: Stable region (blue circles) of 1D crystals evalu-
ated using the smooth approximation. The transverse tunes
are νx = νy = 8.85. The threshold energy corresponds to
γth = γT = 8.85 beyond which no crystals are predicted.

Phonon Theory for a General Lattice
The smooth approximation with γT = νx fails to de-

scribe features of machine lattices where the transition en-
ergy is either high (γT � νx) or imaginary. We hereby
develop the phonon theory applicable to a general machine
lattice where γT may deviate significantly from νx and νy.

Divide the machine into sections along the circumfer-
ence; within each section the external force (i.e. magnetic

focusing and bending) is constant. The one-turn transfer M
is the product of the transfer matrices across each section i,

M = ΠNlat
i=1 Mi (11)

where Nlat is the number of sections along the machine. In
the case of a 1D crystal under regular bending and focusing
forces, the vertical motion (y) is decoupled from the motion
in the other two directions (x, z). The one-turn transfer
matrices in y and x, z are

My = ΠNlat

i=1 My,i, Mxz = ΠNlat

i=1 Mxz,i (12)

Within each section, the transfer matrices may be obtained
by linearizing the Coulomb forces around the equilibrium
positions of the particles,

My,i =

⎡

⎣ cosω2iti
sin ω2iti

ω2i−ω2i sin ω2iti cosω2iti

⎤

⎦ (13)

and
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−1
xz,i(0) (14)

where
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where the coefficients are given by

c3n =
iωniγ

ω2
ni − 2Ω2

, c4n =
−2Ω2γ

ω2
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, n = 1, 3 (21)

with ωni in each section i given by
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where Ω2 is given by Eq. 10. The 1D crystalline structure
is defined to be stable if all the eigenvalues of the one-turn
matrix (Eq. 11) are real for any wave number k.

Fig. 4 shows the stability of the 1D crystalline beams in
a high-transition lattice with γT = 105 much higher than
the transverse tunes (νx = νy = 8.85). At low energy,
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γ < νx, the stable region is similar to that predicted by the
phonon theory using the smooth approximation (Fig. 3).
However, at energies beyond (γ > νx) stable 1D structures
are also predicted, although the threshold density decreases
with energy. A narrow stable region exists even when the
energy is above transition (γ > γT ).
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Figure 4: Stable region (blue circles) of 1D crystals eval-
uated with the phonon theory based on the actual lattice.
The ring consists of 36 lattice periods each containing
four uniform-external-force sections as illustrated in Fig. 2.
Here, νx = νy = 8.85, and γT = 105.

Molecular Dynamics Method
Using the MD method [1, 2], Fig. 5 shows the re-

gion where crystalline structures are obtained in the high-
transition lattice (γT = 105, νx = νy = 8.85). At energies
up to γ ≈ νx,y, stable crystals from 1D string to 3D multi-
shell are formed depending on the line density of the beam,
as shown in Fig. 6. Formation of stable 3D crystals be-
comes increasingly difficult for higher beam energies. At
γ = 20, only 2D crystals are formed. Due to reduction of
the effective horizontal focusing [3], the zig-zag structure
extends in the horizontal plane. Stable 1D structures are
obtained at energies up to the transition but not beyond.
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Figure 5: Stable region (non-crosses) of 1D, 2D, and
3D crystals evaluated using the MD method for the high-
transition lattice. The machine lattice is the same as that
used for Fig. 4 with νx = νy = 8.85, and γT = 105.

MD simulations are also used to study the crystal forma-
tion in an imaginary-γT lattice. Lattice functions of a ring
lattice period is shown in Fig. 2. The phase advances per
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Figure 6: A multi-shell crystalline beam of 24Mg+ ions
formed with the high-transition (γT = 105, νx = νy =
8.85) lattice at the energy corresponding to γ = 10 and
density of 6.2 × 109/m in the laboratory frame. During
simulation, both the transverse and tapered cooling are ap-
plied [11]. If a crystalline state is reached, the cooling force
is removed to test the stability of the formed crystal.

lattice period are μx = μy = 87◦. Fig. 7 shows the region
where crystalline structures are obtained. Again, at ener-
gies up to γ ≈ νx,y , stable crystals from 1D string to 3D
multi-shell are formed depending on the line density of the
beam. Formation of stable 3D crystals becomes increas-
ingly difficult for higher beam energies. On the other hand,
stable 1D structures are obtained at very high energies.
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Figure 7: Stable region (non-crosses) of 1D, 2D, and 3D
crystals evaluated using the MD method for the imaginary-
transition lattice. The transverse tunes are νx = νy = 2.90.
The transition energy corresponds to γT = i13. The ma-
chine of 84 m circumference consists of 12 lattice periods.

COLLIDING CRYSTALS
We provide two examples using 1D ordered ion beams

in a collider to achieve significant luminosity with a small
number of ions.

Rare-ion Collider with Ordered Ions
We adopt the main machine parameters of the Relativis-

tic Heavy Ion Collider (RHIC) to illustrate the performance
of a rare-ion collider with two counter-circulating beams of
360 bunches each containing 4×106 ions. At the beam en-
ergy of γ = 20 below transition, the characteristic distance
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in the rest frame is ξ = 19 μm. For the beam to be an
ordered 1D string, the line density in the laboratory frame
must be below Λthγ/ξ where

Λth = 0.62ν
2/3
eff , ν2

eff = min(ν2
x − γ2, ν2

y) (23)

and the amplitude σx,y of the transverse motion must be
much smaller than the distance between the ions in the rest
frame. The luminosity is given by

L =
f0NBN2

0

4πσ∗
x,y

(24)

where f0 = βc/2πR. Under sufficient beam cooling, Ta-
ble 1 shows that significant luminosity can be attained.

With relatively few number of particles and significant
luminosity, the lifetime of the beam is usual short due to
the event of collisions. Fast beam cooling like optical-
frequency-range stochastic cooling and high-energy elec-
tron cooling is necessary. Ref. [12] indicates that with effi-
cient beam cooling, the ordered state can be maintained in
the presence of significant event rate.

Electron-ion Collider with Ordered Ions
Following the example presented in Ref. [13], signifi-

cant luminosity can be achieved when a beam of rare ions
formed as 1D ordered string collides with an electron beam
of similar beam radius (Table 2) [13, 14]. Electron cooling
is proposed to cool the ion beam to an ordered state.

SUMMARY AND DISCUSSIONS
For regular machine lattices, multi-shell crystals can be

formed for energies (γ) up to the machine tunes (γth ≈
νx,y). Special lattices can be designed – they are AG-
focusing, low-momentum-compaction lattices that have
very high or even imaginary transition energy. Thus, it
is not necessary to make very large rings to achieve high-
energy crystals.

We have developed a phonon formalism for analyzing
1D crystals in such AG-focusing lattices. Stability anal-
ysis based on this formalism is compared with the MD

Table 1: Major parameters of a rare-ion collider with or-
dered ions.

Ring circumference, 2πR [m] 3834
Ring transition energy, γT 23
Ring transverse tunes, νx, νy 29.18, 28.19
Ion charge Z , mass number A 79, 197
Ion beam energy, γ 20
Number of bunches in each ring, NB 360
Bunch length in laboratory frame [m] 1
Number of ions per bunch, N0 106

Transverse amplitude (ave.), σx,y [m] 10−6

Transverse amplitude at IR, σ∗
x,y [m] 0.22×10−6

Momentum spread, Δp/p 0.9×10−6

Inc. space-charge tune shift, Δνsc −19.5
Beam-beam tune shift, Δνbb −4.1
Instan. luminosity, L [cm−1s−1] 4.7×1027

Table 2: Major parameters of an electron-ion collider with
ordered ions [13].

Ring circumference [m] 108
Ion charge Z , mass number A 82, 208
Ion kinetic energy [MeV/n] 180
Total Number of ions in the ring 3×106

Interaction region length [m] 1
Tran. amplitude at IR [m] 6×10−6

Momentum spread, Δp/p 1.3×10−6

Inc. space charge tune shift −0.25
Beam-beam parameter 1
Instan. luminosity [cm−1s−1] 1.4×1027

simulations. In such lattices, lower-density crystals can
be formed at energies much higher than the machine tunes
(γth � νx,y). In particular, 1D crystals can be formed
in low-momentum-compaction lattices even if γ � νx,y.
However, we find that it is impossible to form multi-shell
crystals in this energy regime possibly due to the sensitiv-
ity of the effective momentum compaction to the transverse
force between the particles.

Even 1D crystals, when made to collide, would have a
very interesting luminosity. We have presented two exam-
ples of such rare-ion colliders. Performance of an ion-ion
collider may be demonstrated by implementing a trap with
a storage ring and force the ordered beam in the ring to
interact with the crystal formed in the trap.

We thank X.-P. Li, S. Machida, D. Moehl, and D. Tr-
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grateful to M. Steck, D. Moehl and the COOL07 organizing
committee for the invitation and support to the workshop.

REFERENCES
[1] J. Wei, X-P. Li, and A. M. Sessler, Phys. Rev. Lett., 73

(1994) 3089
[2] J. Wei, H. Okamoto, and A.M. Sessler, Phys. Rev. Lett., 80

(1998) 2606
[3] X.-P. Li, H. Enokizono, H. Okamoto, Y. Yuri, A.M. Sessler,

and J. Wei, Phys. Rev. ST-AB, 9 (2006) 034201
[4] J. Wei, A.M. Sessler, EPAC (1998) 862

[5] J. Wei, H. Okamoto, S. Ochi et al, EPAC (2006) 2841
[6] K. Okabe, H. Okamoto, Jpn. J. Appl. Phys. 42 (2003) 4584
[7] I. Hofmann, L. Laslett, L. Smith, and I. Haber, Part. Accel.

13 (1983) 145
[8] J. Wei, X.-P. Li, and A.M. Sessler, Proc. 6th Adv. Accel.

Conf. (1994) 224
[9] V.V. Vladimirski, E.K. Tarasov, Theoretical problems of the

ring accelerators, USSR Academy of Science (1955)
[10] C. Johhnstone, E. Keil, and D. Trbojevic, private communi-

cations
[11] H. Okamoto, J. Wei, Phys. Rev. E, 58 (1998) 3817
[12] J. Wei, A.M. Sessler, EPAC (1996) 1179
[13] T. Katayama, D. Moehl, RIKEN Report (2002)
[14] I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, and T.

Katayama, Inst. of Phys. & Chem. Res. (RIKEN) Report:
RIKEN-AF-AC-34 (2002)

Proceedings of COOL 2007, Bad Kreuznach, Germany TUA1I04

95


