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Abstract 
   Lattices that circumvent the ‘mixing dilemma’ for 
stochastic cooling have repeatedly been considered but 
were not adopted in the original design of existing 
cooling rings. Recently new interest has arisen to modify 
existing machines and to design future ‘optimum mixing 
rings’. This talk is meant to summarize the advantages 
and disadvantages with the aim to introduce the 
discussion.  

INTRODUCTION 
For efficient stochastic cooling a small dispersion (ηPK)  

in the time of flight is desirable on the beam-path from 
pickup to kicker and a large dispersion (ηKP) on the way 
kicker to pickup. For a regular lattice one has (at least 
approximately) 
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i.e. the local η-factors are equal to each other and given 
by the off-momentum factor of the whole ring. Then the 
spread of the flight times ΔΤPK (leading to undesired 
mixing) and ΔΤKP (desired mixing) are related by the 
corresponding lengths LPK and LKP along the 
circumference 
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Thus in the special case of a regular lattice and a cooling 
loop that cuts diagonally through the ring one has 
ΔΤPK = ΔΤKP. One can however design an ‘asymmetric’ 
(also called ‘split ring-’ or ‘optimum mixing-’) lattice [1], 
which combines sections with small local η in one part 
with large η-sections in the other part. In this way ΔΤPK 
and ΔΤKP can be adjusted independent of each other. In 
addition if the local momentum compaction factors 

2−=
tr

γα  are tuneable, then optimum mixing can be 

envisaged for different energies and one can even 
envisage η-tuning dynamically during cooling at fixed 
energy. The potentially large gain in cooling speed has to 
be balanced against difficulties such as complexity of the 
lattice, and ‘single particle’ and collective beam stability.   

GAIN WITH AN ASYMMETRIC LATTICE 
It can be concluded from [1] that by optimising the 

mixing one can gain a factor of ~3.4 in the initial cooling 
rate. This is when the system noise is negligible and the 

cooling loop cuts diagonally through the ring. To ease the 
discussion this ‘standard case’ will mostly be assumed in 
the following. For low energy rings where the distance 
LPK can be made considerably smaller than LKP and also 
for cooling systems with poor signal to noise ratio, the 
gain is less pronounced. On the other hand for momentum 
the cooling the improvement factor can be larger than 3.4 
because with a regular lattice the mixing situation 
degrades as the Δp decreases. For momentum spread 
reduction by e-1 (e-2) the overall improvement turns out to 
be 4.4 (5.8) in our standard case.  

The gain concerns transverse cooling and longitudinal 
cooling by the “Palmer method” [2] where the momentum 
error is detected via the transverse displacement of the 
particle. For the filter method of Thorndahl [3] where the 
in essence the momentum error is deduced from the 
change in time of flight for a whole revolution, the “split 
lattice” is not helpful. However for the further momentum 
cooling methods, that use the time of flight over part of 
the circumference [4,5], the advantage remains. In this 
case one has to provide a well chosen finite, and if 
possible even tuneable η (instead of η=0) over the 
distance where the flight time is observed, and again large 
η for the section kicker to pickup. This can be achieved, 
at least in principle, by placing the observation interval 
partly into the low mixing and partly into the strong 
mixing branch of the lattice. 

In summary: a factor of three to six in cooling speed 
can be gained with an optimum mixing lattice. The gain 
concerns transverse cooling as well as longitudinal 
cooling by the Palmer and local time of flight approaches 
but not the filter method. 

LATTICE MODULES 
Small 

PKη  requires a local momentum compaction 

2−= PKtrPK γα  close to the beam’s 2−γ . Big 
KPη  can be 

realized by large negative 
KPα . There is a long list of 

references that deal with adjusting the momentum 
compaction (starting with the 1955 paper of Vladimirski 
and Tarasov [6] who proposed reverse bend dipoles to 
make the momentum compaction negative). The original 
aim was to avoid crossing of transition energy by making 

trγ  large or even imaginary (α negative).  In the 1970s 

the additional task of performing a jump of 
trγ  without a 

too large change of the betatron tune [7-9] came up. The 
aim of the jump is to cross transition rapidly and this was 
achieved successfully, first in 1969 and operationally 

since 1974 in the CERN PS [7]. Later trγ -jumps were 

incorporated in the Booster and the Main Injector at 
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FERMILAB, as well as in the AGS and RHIC at BNL. 
Examples of synchrotrons that worked with imaginary 
transition energy are LEAR and STURN II. 

 In these applications negative closed orbit dispersion 
(D(s)<0) in bending magnets is of prime importance.  
Basically two methods, the ‘harmonic-’ and ‘modular 
approach’, are used to enhance D. In the harmonic 
method one excites a ‘dispersion oscillation’ by 
introducing a super-periodicity S in the bending or the 
focussing with S close to the betatron tune. In the 
modular approach local ‘dispersion bumps’ are generated 
via quadrupoles or bends. Both methods affect not only 
the dispersion but also the betatron functions, the tunes 
and other lattice properties. It is the aim of the designer to 
keep the unwanted perturbations small. This is more 
difficult in the existing machines (the PS, AGS, FNAL-
booster) where, to maintain constant tune, a large number 
of 

trγ -jump quadrupoles has to be used and the maximum 

excursions of the dispersion and the β−functions are 
large.  In designs, where flexible momentum compaction 
is included from the start, these problems are alleviated, 
although not completely removed. 

 

 
Figure 1: Layout of a simple Flexible Momentum 
Compaction (FMC) lattice module (adapted from [11]). 

 Already in 1972 L. Teng [10] proposed modules with a 
negative dispersion at dipole locations bridged by straight 
sections where the dispersion wave was positive (Fig. 1). 
Such a concept forms the basis of flexible momentum 
compaction (FMC) modules. More recently Trbojevic and 
co-workers [12-15] extended the modular approach. Their 
FMC sections consist of a FODO part where a negative 
dispersion in the dipoles provides negative αp and a 
matching section, where the optical functions are re- 
matched to avoid excessive excursions.  

  
Figure 2: Example of an advanced FMC module (adapted 
from [13]).   

The authors of [13] find that “…the modules can be 
made very compact without much unwanted empty space, 
and at the same time, the maximum of the dispersion 
function can be controlled to less than that of the regular 
…FODO lattice, thus overcoming … the difficulties of 
Teng’s original idea”. The phase advance of the module 
can be adjusted to be an odd multiple of quarter betatron 
waves and modules can be positioned one after another to 
create long sections with small or large negative 
momentum compaction. Designs for large momentum 
compaction [12], isochronous [14] and adjustable 
momentum compaction [15] lattices have been 
established.  

In summary: It appears that the modular approach is 
well suited, to construct a cooling ring lattice consisting 
of small momentum compaction modules for the (low 
mixing, quasi-isochronous) part pickup to kicker and 
negative momentum compaction modules for the (strong 
mixing) part kicker to pickup. For a cooling ring that has 
to work at different energies, the isochronous part has to 
be tuneable. Here techniques used for the γtr jump can be 
helpful.  

DISADVANTAGES 

The FMC modules require extra quadrupoles. For 
example: the module of Fig. 2 needs 7 quadrupoles (on 
the assumption that the 2x2 adjacent quads near the centre 
are combined into a single lens each) compared to 6 in the 
corresponding regular FODO lattice. The number of 
different quadrupole families is 4 instead of 2 for the 
FODO structure. In fact the problems are similar to those 
of other lattice insertions like long straight sectors or low 
beta sections.  

In the ‘Teng structure’ of Fig.1, the number of 
quadrupoles is the same as for the FODO lattice but the 
number of families is again larger, probably also 4 instead 
of 2 because in the ‘missing magnet sections’ the phase 
advance is specific and the horizontal defocusing of the 
dipoles is absent.   

 Moreover, a machine with simple FMC modules will 
have larger excursions of the optical function and hence 
reduced acceptances. With the advanced modules this 
drawback is absent or less pronounced. Yet there remains 
the problem that one will have several pieces of straight 
section and low betas at locations where one cannot 
always make use of them. 

 It is a question of detailed design to conceive a lattice 
which incorporates other basic blocks like 
injection/ejection, long straight sections, and locations for 
experimental apparatus. Lee, Ng, and Trbojevic [13] 
designed a complete accelerator ring using FMC modules. 
They found “…that this lattice is extremely tunable and is 
insensitive to misalignment errors. Its chromatic 
properties are at least comparable to that of a regular 
FODO lattice. … it provides dynamical aperture as large 
as that of a regular … lattice”. 

The ‘optimum mixing lattice’ will however have a basic 
periodicity of 1 and thus many systematic resonances will 
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be present. This perturbation is similar to the disturbance 
due to other insertions like e.g. a low beta section. 

Finally the large η of the ring influences some RF-
parameters e.g. the voltage necessary to produce a bucket 
of given size (U proportional to η) and the synchrotron 
oscillation frequency (fs α η1/2) 

In summary:  “Optimum mixing lattices” need extra 
qudrupoles and extra quadrupole families. Compared to a 
regular FODO lattice they are more complicated, both in 
their design and their operation, especially when the 
advanced FMC modules are used. With simpler modules 
the acceptance will suffer. Other quantities depending on 
the ring η change.  

COHERENT BEAM STABILITY 

Damping of longitudinal instabilities is lost close to the 
transition energy (η −> 0). In fact the “Keil-Schnell-
Boussard” stability criterion [16] requires coupling 
impedances Zn/n smaller than a maximum that is 
proportional to η and thus unattainably small for small η.  
However -- because the growth of the instability takes a 
great number of turns -- it is the η of the entire ring that 
counts. For the “split ring” (with circumference C) we 
have  
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Then, if the mixing kicker to pickup is large (η kp large 

as desired) we preserve a good margin for tolerable 
coupling impedance, frequently even higher than the in a 
regular lattice. 

In summary: The “optimum mixing lattice” has 
automatically a large “whole ring η" and the longitudinal 
stability threshold is usually equal or even more 
favourable than in a regular lattice. 

CONCLUSION 

In the design of a new generation of stochastic cooling 
rings, the “optimum mixing concept” should be taken into 
consideration. FMC modules, originally developed to 
move up transition energy, are appropriate to construct 
lattices optimised for mixing. One can even think of 
tuning transition energy during a cooling cycle, taking 
advantage of concepts developed for a γtr–jump. The 
benefits have to be weighed against complexity, lager 
number of quadrupoles and, for simple FMC modules, 
larger required aperture or reduced acceptance. 
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