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Abstract

Besides the beam cooling effect, an electron cooler also
acts as a non-linear optical element. This may lead to the
excitation of resonances possibly resulting in an increase
of the beam emittance. The aim of this work is the calcula-
tion of resonances driven by the electron space charge field
in the cooler installed in the SIS heavy ion synchrotron at
GSI Darmstadt. For our calculations, we used a numeri-
cal model consisting of a rotation matrix representing the
ideal lattice together with a non-linear transverse kick ele-
ment representing the electron cooler. Within this model,
we studied the non-linear tune shift and the dominant reso-
nance lines resulting from the interaction with the cooler.

INTRODUCTION

The space charge field in an electron cooler acts as a
non-linear optical element in the lattice of a storage ring.
This may lead to the excitation of additional ring reso-
nances. Depending on the machine working point these
resonances cause emittance growth and an effective heat-
ing of the beam, as it was observed e.g. in the CELSIUS
cooler storage ring [1].

Electron cooling at medium energies will play an essen-
tial role in the proposed FAIR storage rings [2]. Electron
cooling is already available to improve the beam quality
of the intense ion beams at low energy in the existing SIS
synchrotron. At low or medium beam energies, the trans-
verse tune shift due to the direct space charge force plays
an important role. The resonances excited by the non-linear
space charge field of the cooler electron can potentially
limit the reachable beam intensity and quality.

In this work, the excitation of resonances driven by an
electron cooler is calculated within a simplified numerical
model. The electron cooler is represented through a non-
linear kick element in an otherwise ideal lattice. This en-
abled us to study only the resonances driven by the elec-
tron cooler. The MAD-X code [3] was used to perform
resonance scans over a large working point area. The study
is performed for parameters relevant to the electron cooler
in the the SIS heavy ion synchrotron at GSI Darmstadt.
This theoretical study provides the necessary information
for dedicated measurements of cooler induced resonances
and effects in SIS.
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Figure 1: Normalised charge density profile used for the
electron beam as provided by the beambeam element of
MAD-X [3] as a function of x for y = 0. An edge layer
with a width w = 0.01 b was used in the calculations.

PARTICLE TRACKING MODEL

In our calculations we used a simple model consisting of
a rotation matrix providing the phase advance of the lattice
of SIS–18 and a non-linear transverse kick introducing the
force of the electron cooler in the thin lens approximation.
The coordinates of a particle after the (n + 1)-st revolution
are calculated from those of the n-th revolution by

(
zn+1

z
′
n+1

)
=

(
cos 2πνz β̂z sin 2πνz

− 1

β̂z
sin 2πνz cos 2πνz

)

×
(

zn

z
′
n + Δz

′
(xn, yn)

)
(1)

with z = x, y. Here, νz is the bare tune of the lattice, β̂z is
the unperturbed beta function in z direction at the location
of the electron cooler, and

Δz
′
(x, y) =

qq
′
N

′

2πε0m0c2β2
0γ3

0

z

R2

R∫
0

dr r n0(r) (2)

with R =
√

x2 + y2 is the transverse momentum kick de-
pending on both spatial direction x, y. Here,

N
′
=

∣∣∣∣IeLcool

q′β0c

∣∣∣∣ (3)

is the number of electrons in the electron cooler. q, q
′

are
the charges of the particles in the beam considered and in
the electron beam, i.e. it is q

′
= −e. n0 is the normalised

radial current distribution in the electron beam.
The electron beam of an electron cooler usually has a

radial shape with a constant current density in the centre
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Table 1: Parameter of SIS–18 used in the calculations and
taken from [4] and [5], and quantities calculated with them.
K1 corresponds to equation (4) and Δνx, Δνy to equation
(5).

Particle U73+

Injection energy E 11.4 MeV/u
Relativistic factors β0, γ0 0.15, 1.01
Cooling length Lcool 3 m
Electron current Ie 0.3 A
Cathode radius rcath 12.7 mm
Adiab. expansion factor fE : used, (range) 3, (1 ... 8)
Electron beam radius (b = rcath

√
fE) 22 mm

Beta function in the cooler (β̂x, β̂y) 8 m, 15 m

Eff. focal strength K1 −0.010 m−1

Resulting tune shift Δνx, Δνy 0.0066, 0.012
Eigen space charge tune shift Δνsc up to −0.25

and a thin edge layer. We could use the beambeam element
of the MAD-X code for the representation of the electron
cooler. The profile is shown in figure 1.

In the region of constant current density, a momentum
kick of this shape acts as an element with a field gradient
having an effective focal strength K1. For a sufficiently
small width of the edge layer w, the focal strength is given
by

K1 := k1Lcool =
Δz

′

z
≈ qeN

′

2πε0m0c2β2
0γ3

0b2
. (4)

For the resulting linear tune shift, one can write

Δνz = − β̂xK1

4π
. (5)

Our calculations were performed for U73+ ions using the
parameters given in table 1.

RESULTS

To make the resonances visible, the relative rms beam
radius variation

wz,rel =
σf,z

σi,z
, z = x, y, (6)

with

σ(i,f),z =
√

z̄2 =
1
N

√√√√ N∑
k=1

z2
k,(i,f) (7)

was calculated as a function of the tune values νx, νy of
the rotation matrix. N is the number of the test particles
tracked. We used a particle beam with a Gaussian initial
profile.

To have a realistic tune range, we searched for res-
onances in a tune window defined by νx ∈ [4.05, 4.3]
and νy ∈ [3.2, 3.45], which is near the working point
(νx, νy) = (4.2, 3.4) given in [4], and which does not con-
tain a half integer resonance. On the other hand, it was
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Figure 2: Relative rms beam width in x and y direction,
upper and lower picture, respectively. The colour scale is
within wrel ≤ 1 (dark grey) and wrel ≥ 2 (white).

pointed out in [1] within an analytic model, that an electron
cooler, with a round electron beam, excites only resonances
of even order, where, additionally, the resonances strength
decreases with increasing order. Hence, we searched only
for resonances of order 4 and 6.

The initial rms beam width in both spatial directions
were chosen to be equal to the radius of the electron beam,
i.e. σi,x = σi,y = b = 22 mm, see table 1. The resulting
initial rms emittances are different due to the different emit-
tances, it is εx = 61.0 mm mrad and εy = 32.3 mm mrad.

The resonances found can be seen in figure 2. The
straight black lines denoting the resonances satisfy the re-
lation

p = mνx + nνy. (8)

The positions of the resonances found in our tune scan by
detecting the enhancement of the beam width are near these
lines, which denote the positions of the resonances with
respect to the unperturbed tune νx, νy of the rotation ma-
trix. So, we could identify every resonance line found. The
resonances found in the tune scan are slightly shifted to
smaller tunes compared to the resonance lines of the rota-
tion matrix. The reason for that is, that an electron cooler
contrary to higher order multipoles yields also a linear tune
shift Δνz(x, y). On the other hand, the position of the res-
onances depend on the total tune νz,tot = νz + Δνz(x, y).
So, the corresponding tune of the rotation matrix νz is
smaller than the total tune νz,tot.

As expected, we found resonances of order 4 generally
being the strongest resonances followed by resonances of
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Figure 3: Relative beam width as a function of the vertical
tune within the range νy ∈ [3.1, 3.45] for one horizontal
tune νx = 4.2. So, this figure is an extract of figure 2.

the order 6. Additionally, only so called sum resonances
and resonances depending only on the tune of one direc-
tion lead to a significant beam blow up, what seems to be
reasonable, see e.g. [6]. Here, latter lead to an enhance-
ment of the beam size only in one direction. So, the res-
onances (p, m, n) = (17, 4, 0) and (25, 6, 0) are visible
only in the upper picture of figure 2 showing the relative
beam width in horizontal direction, whereas the resonances
with (p, m, n) = (13, 0, 4) and (20, 0, 6) appear only in the
lower picture of that figure and in the solid line in figure 3
showing the relative extension of the beam width in verti-
cal direction. Figure 3 also shows, that the widths of res-
onances of different order do not significantly differ from
each other. For that reason, a quantitative verification of
the widths using the analytic model in [1] is not possible.

Under the conditions defined in table 1, we obtained
a tune shift due to the electron cooler of Δνx =
0.0066, Δνy = 0.012, what is so small, that the according
tune spread does not cross any resonance found in our cal-
culation. On the other hand, the tune shift due to the eigen
space charge of the beam has an size up to Δνsc ≈ −0.25.
Therefore, the according tune spread will cross some of
the strong resonances shown in figure 2. For that reason,
we observed the beam behaviour at a working point near a
strong resonance in more detail. In particular, we inves-
tigated the growth of the beam width depending on the
initial beam width and the number of revolutions. One
can see in figure 4 the increase of the beam width occur-
ring only in vertical direction because of the working point
νx = 4.1, νy = 3.245 close to the resonance given by
(p, m, n) = (13, 0, 4). We found, that only particles being
initially at the edge of the beam increase their distance from
the beam centre, whereas particles in the core stay there.
So, the number of test particles having a betatron amplitude
larger than the radius of the electron beam changed from
2049 at the beginning to 2056 after 100000 revolutions,
what is an increase by 0.3 %. Here, the total number of test
particles was 5000, and it was σi,x = σi.y = 0.5 b. The ac-
cording vertical rms width increased from σi,y = 22 mm
to σf,y = 26.4 mm and so, by about 20 %. Note, that
we have a 4-dimensional Gaussian distribution in a round
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Figure 4: Spatial beam profile for σi,x = σi,y = 0.5b at
the beginning of a run and after 100000 revolutions. The
working point is νx = 4.1, νy = 3.245.

beam, where the number of particles Nin being always
closer to the beam centre than a certain distance R is given
by

Nin ∝
R/σ∫
0

x3e−
x2
2 dx. (9)

The observation coincides with the statement, that reso-
nances are driven only by the non-linear part of the electric
field of the electron beam.

One exception from that general statement is the growth
of the beam width due to an half-integer resonance. A reso-
nance of this kind is driven by its nature by a quadrupole er-
ror in the lattice, i.e. by a purely linear perturbation. Such a
perturbation can not cause an emittance growth. The beam
blow up is caused by the growth of the beta function, see
e.g. [6]. Hence, the condition σz ∝ √

βz is valid. Here, the
full width of the tune range with a beta function enhanced
by a factor 2 or more is given by the half-integer stopband
integral

Jp =
1
2π

∮
β̂k(s)e−ipφds. (10)

This provides the possibility to compare tracking results to
an analytic expression. So, we performed calculations with
a particle beam having an initial extension σi,x = σi,y =

Figure 5: Vertical phase space plot for an initial beam width
σi,y = 0.01 b 	 b at νx = 4.2, νy = 3.45 after several
number of revolutions: Nrev = 20, 50, 100, 10000. The
vertical straight lines in pictures 2 – 4 denote the radius of
the electron beam b. The black points in the centre denote
the initial positions of the particles in phase space.
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Figure 6: Relative vertical rms beam width wy,rel after dif-
ferent numbers of revolutions. Note, that it is σi,y = 0.01 b
and, so wy,rel = 100 refers to an absolute final rms beam
width σf,y = b. It is νx = 4.2.

0.01 b 	 b to satisfy the condition of a pure linear pertur-
bation. Due to the momentum kick, the beam extension in
vertical direction started to increase. Here, the phase space
ellipse became only stretched without increasing its area,
as long as the vertical beam size had not exceeded the ra-
dius of the electron beam. After about 50 revolutions, the
beam size exceeded the electron beam leading to the defor-
mation of the phase space ellipse, as figure 5 shows. So,
the condition for the applicability of the stopband integral
was principally no longer valid. Fortunately, the width of
the tune range with enhanced beam width remained almost
constant also when the beam width exceeded the electron
beam radius, see figure 6. So, it was possible to evaluate the
full width of this range and compare it to the half-integer
stopband integral. We found a very good agreement be-
tween them for several values of the electron number in the
cooler, as one can see in figure 7.

SUMMARY

We studied the resonances generated by the space charge
force of the electron beam in the SIS–18 cooler. The initial
rms radius of the ion beam was adjusted to the radius of
the electron beam. Resonances up to the 6th order could be
identified. Furthermore, we could qualitatively reproduce
the dependency of the resonance width on the resonance
order as given by an analytic model in reference [1]. This
model predicts that the resonance width decreased, when
the order of a the resonances is enhanced. A quantitative
reproduction of the beam width using an analytic model
was possible only for the half integer resonance. Here, we
found a good agreement between the resonance width and
the width given by the analytic half-integer stopband inte-
gral.

Beyond that, we found, that the resonances driven by the
electron cooler are of a similar width as those driven by
higher order multipoles in the lattice of SIS–18 [7].

An important result is that the resonances induced by the
electron cooler can lead to a strong increase of the width
and the emittance of an ion beam. This can lead to a re-
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Figure 7: Full rms beam width after 1000 revolutions cal-
culated using MAD-X compared to the half integer stop-
band integral J7 from equation 10.

duced cooling rate and so to an effective heating mecha-
nism. Furthermore, the resonances are an additional pos-
sible constraint for the choice of the tune, because they
could limit the extension of the space charge tune spread
due to the self fields of the beam and therefore leading to
the reduction of the space charge limit. On the other hand,
this effect could be weakened by the fact, that an emittance
growth due to the interplay of the direct space charge tune
shift and spread on one hand and the resonances on the
other hand arises only from particles having from the be-
ginning a betatron amplitude larger than the radius of the
electron beam. The number of these particles can be cho-
sen by choosing a proper value for the width of the ion
beam. On the other hand, it is desirable to keep this num-
ber small in any case to avoid a reduction of the electron
cooling rate. So, the limiting influence of the resonance on
the size of the direct space charge tune spread might possi-
bly minimised by proper initial conditions.

Nevertheless, the interplay of the cooler induced reso-
nances, the direct space charge tune shift, and other ma-
chine resonances requires further investigations. This will
be the topic of future studies.
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