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Abstract 
For more than two decades since 1992, Andy Sessler 

worked with us as a hobby on the topic of crystallization 
of charged ion beams and cooling methods. In this paper, 
we review the studies jointly performed with Andy 
highlighting major findings and challenges, and discuss 
current status and possible future topics and directions. 

INTRODUCTION 
Beam crystallization has been a topic of interests since 

first evidence of experimental anomaly was observed on 
an electron-cooled proton beam at the storage ring NAP-
M in 1980 [1]. Starting 1985, J. Schiffer and co-workers 
studied the properties of one-component, non-relativistic 
charged particles in the external potential of a simple 
harmonic oscillator using the molecular dynamics method 
[2]. Since then, strong space-charge dominated 
phenomena and one-dimensional (1-D) ordering states 
were reported with both proton and heavier ions at storage 
rings TSR [3], ASTRID [4], ESR [5], CRYRING [6], and 
S-LSR [7] (Table 1). 

In 1992, A.G. Ruggiero introduced A.M. Sessler and J. 
Wei (JW) to the discussion of studying crystalline beams 
in realistic storage ring conditions. The study immediately 
involved X.-P. Li (XPL) who is a condensed matter 
physicist by training. We realize that the most 
straightforward and rigorous approach is to derive the 
equations of motion in the so-called beam rest frame 
where the reference particle is at rest. In this frame, the 
conventional method of condensed matter physics can be 
readily applied.  

It took JW six month to adopt the formalism of general 
relativity to derive the equation of motion in the beam rest 
frame using numerical algebra methods [8]. In another 
month, XPL developed the beam dynamics algorithms as 
well as other relevant condensed matter analysis 
algorithms. Together we created the codes SOLID that 
can be used to rigorously study beams at ultra-low 
temperature regime [9].  

To attain an ordered state, effective beam cooling is 
needed to overcome beam heating caused by coherent 
resonance crossing and intra-beam scattering. 
Furthermore, the cooling force must conform to the 
dispersive nature of a crystalline ground state in a storage 
ring for 3-D structures. To reach the state of crystalline 

beams in numerical simulations, we used artificial cooling 
methods enforcing periodicity of the particle motion in 
the beam rest frame. H. Okamoto (HO) led the analysis of 
actual beam cooling methods including coupled cooling 
and tapered cooling [10]. Thus, the entire theoretical 
approach on beam crystallization was developed.  

For more than two decades since 1992, Andy worked 
closely with us on all major topics of beam crystallization 
from the derivation of equations of motion to numerical 
simulation and then to realization with practical cooling 
methods. Figures 1 to 6 show various occasions 
associated with Andy during the past 20 years. Andy 
hosted our extended visits to Lawrence Berkeley National 
Laboratory (LBNL) in formulating the study approaches 
and identifying major directions of breakthrough (Fig. 1). 
He led the interaction with major experimental groups at 
Aarhus, Denmark and Heidelberg, Germany, providing 
insights in experimental benchmarking (Fig. 2). Starting 
from 1997, Andy visited Kyoto University, Japan, for 
extended periods of time stimulating both experimental 
and theoretical beam cooling and crystallization work in 
Japan. Later, he stayed at Hiroshima University 
collaborating with H. Okamoto and his students (Fig. 4).  

Andy has been our mentor, role model, colleague, and 
friend. He was always fresh with new ideas and 
passionate about physics, life, and friendship. During 
early years of study at Berkeley, he often came up with a 
dozen new ideas a day as we explored the fascinating 
physics of beam crystallization. Even though most did not 
survive the subsequent trial and error, some most 
important findings originated from Andy’s imagination.  

 
Figure 1: A.M. Sessler in Muir Woods, California, USA, 
1993 (photo taken by J. Wei). Andy hosted extended visits 
to LBNL at multiple stages of beam crystallization 
studies.  

 ___________________________________________  
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Table 1: A compilation of experimental parameters and observations at existing storage rings: NAP-M [1], TSR [3], 
ASTRID [4], ESR [5], CRYRING [6], and S-LSR [7]. 
 

 NAP-M TSR ASTRID ESR CRYRING S-LSR 

Eu [MeV/u] 65.7 1.9 0.00417 360 7.4 7 

Circumference [m] 47.25 55.4 40 108.36 51.63 22.557 

γ 1.07 1.002 1.00000444 1.384 1.00789 1.00746 

γT 1.18 2.96 4.34 2.67 2.25 1.23 

NSP 4 2 4 6 6 6 
νx

NSP
/
νy

NSP
 0.338 / 0.315 1.285 / 

1.105 
0.345 / 0.33 0.383 / 0.383 0.383 / 0.383 0.24 / 0.24 

Species Proton 7Li+ 24Mg+ 197Au79+ 129Xe36+ Proton 

Cooling Method EC LC LC EC EC EC 

ξ [µm] 4.6 4.15 21.8 12.7 11.2 4.82 

TBx,y / TBz [K] 50 / 1 -- / 3 >0.1 / 0.001 13580.6 / <10 27.2 / 18.1 9.05 / 1.54 

Tx,y / Tz 13.9 / 0.28 -- / 0.75 >0.132 / 0.00132 1.68 / <0.001 0.014 / 0.009 2.64 / 0.45 

N0 (anomaly) 2×10
7 -- 5.5×10

8 4000 1000—
10000 

2000 

N0 (1-D to 2-D) 6.0×10
6 1.4×10

7 1.1×10
6 7.9×10

6 4.7×10
6 2.9×10

6 

Observations Schottky 
anomaly 

Indirect 
transverse 

cooling 

Schottky anomaly 1-D ordering 1-D ordering 1-D ordering 

  

 

Figure 2: J. Wei, A.G. Ruggiero, A.M. Sessler, J. Hangst, 
and J. Schiffer (from left to right) at the 31st Workshop of 
the INFN Eloisatron Project on Crystalline Beams and 
Related Issues, Erice, Italy, 1995 (photo taken by R. Ma). 

Andy was an avid outdoor person and loved sharing 
physical activities, such as skiing, hiking, and jogging 
(Fig. 1). We routinely jog during lunchtime to the 
“Inspiration Point” at Berkeley, sharing jokes and solving 
physics challenges. Just as he loved sharing the outdoors, 
he loved sharing ideas, thoughts, knowledge, and life-

time experiences. We went to Andy not only on physics 
problems but also upon life and career decisions. 

Andy believed that physics is means to great friendship. 
He enjoyed friendship worldwide and across several 
generations of scientists. Andy frequently hosted students 
and junior physicists from Asia, Europe, and USA 
working on diverse subjects of accelerator physics. He 
loved travels not only to conferences, workshops and 
meetings in different continents but often on adventure 
trips to faraway places in the world.  

 
Figure 3: J. Wei, X.-P. Li, K. Takayama and S. Yu (from 
left to right) at the Andy Sessler Symposium, Berkeley, 
USA, 2003. (From photos.lbl.gov, © Regents of UC 
through LBL.) 
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Figure 4: H. Okamoto, A.M. Sessler and S. Adams (from 
left to right) in Hiroshima, Japan, 2006. 
 

 
Figure 5: A. Hofmann, A.M. Sessler, E. Wilson, E. Keil, 
B. Zotter and D. Möhl (from left to right) at CERN, 
Switzerland, 2009 (photo taken by H. Okamoto).  

  
Figure 6: A.M. Sessler and J. Wei discussing work (left) 
near Andy’s apartment (right) at Oakland, USA, October 
3, 2013. 

Andy has always been optimistic and realistic facing 
physics problems as well as life situations. Referring to 
his deteriorating medical situation, Andy wrote on August 
16, 2013: “I have had a wonderful life: family, 
professionally, recreation, travel. Couldn't ask for more. I 
have taken it as it comes, and in the same spirit I am 
taking this.”[11] When JW visited him in October 2013, 
six months before his passing (Fig. 6), Andy spent half a 

day discussing candidates that Michigan State University 
and the Facility for Rare Isotope Beams (FRIB) Project 
should approach and recruit. He had strong opinion on the 
importance of retaining free energy and on the long-range 
wellbeing of basic, non-programmatic beam sciences.  

Upon receiving the Enrico Fermi Award in February 
2014, Andy said: “Actually, it has been great fun 
developing all these things. I had more fun doing that—
through the years—than I am enjoying even now on this 
happy day.” “I am pleased that this award recognizes the 
activity of accelerator and beam scientists. I was fortunate 
to be in, almost at the beginning, when the power of 
theoretical physics was first brought to bear on 
accelerators.” [12] 

 
Figure 7: S. Adams, B. Obama and A.M. Sessler at the 
2013 Enrico Fermi Award Ceremony in the White House, 
Washington D.C., USA, on February 3, 2014 [12].  

CRYSTALLINE BEAM IN STORAGE 
RINGS 

In this section, we summarize major results obtained 
during our study on crystalline beams.  

For a system of particles with charge Ze and mass 
Am0, the characteristic length ξ is given by [9] 

ξ = �
𝑍𝑍02𝑟𝑟0𝜌𝜌2

𝐴𝐴𝛽𝛽2𝛾𝛾2
�

1
3
 

 

where 𝑟𝑟0 is the proton classical radius, βc and γ𝐴𝐴𝐴𝐴0𝑐𝑐2are 
the velocity and energy of the reference particle, and ρ is 
the radius of curvature of the main bending region of the 
storage ring. In a typical accelerator (Table 1) this 
characteristic length corresponds to a regime where 
quantum effects are negligible and classical dynamics is 
adequate [13].  

Crystalline Beam Ground State 
In the classical dynamics limit, the “ground state” of a 

crystalline beam corresponds to “zero emittance” state 
where the motion of the circulating particles is periodic in 
time with the period of the machine lattice. As shown in 
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Fig. 8, particle trajectory in the transverse direction 
conforms to AG focusing (breathing), and in the 
longitudinal direction conforms to the change in bending 
radius (shear). In the presence of a longitudinal electric 
field, momentum pz  also varies periodically conforming 
to the energy gain at the cavity.  

The goal of beam crystallization is to reach such kind 
of zero-emittance state where all “betatron” (transverse) 
and “synchrotron” (longitudinal) motions vanish and 
where all particles follow the periodic “closed orbit” as 
the external focusing force and intra-particle Coulomb 
force balance each other [8,14].   

 

 
Figure 8: Particle trajectory of a bunched crystalline 
beam. The machine consists of 10 FODO cells with 
νx=2.8, νy = 2.1, and γ =1.4. Lattice components in each 
cell are displayed on the figure: B is a bending section, F 
and D are focusing and de-focusing quadrupoles, and RF 
is the bunching rf cavity. 

General Relativity Derivation of Beam Rest 
Frame Hamiltonian 

Although there can be more simplified method, we 
decided to adopt the general relativity formalism by C. 
Møller [15] to rigorously derive the equation of motion in 
the beam rest frame by tensor algebra. For a storage ring 
consisting of dipole magnetic of field 𝐵𝐵0 , quadrupole 
magnet of field gradient 𝜕𝜕𝐵𝐵𝑦𝑦

𝜕𝜕𝜕𝜕
, and accelerating electrical 

field ( 𝐸𝐸𝑠𝑠 ), the motion can be represented by the 
Hamiltonian [8] 

𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
1
2
�𝑃𝑃𝑖𝑖𝜕𝜕2 + 𝑃𝑃𝑖𝑖𝑖𝑖2 + 𝑃𝑃𝑖𝑖𝑖𝑖2 � − 𝛾𝛾𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖

𝑖𝑖

+
1
2

[(1 − 𝑛𝑛)𝑥𝑥𝑖𝑖2 + 𝑛𝑛𝑦𝑦𝑖𝑖2] + 𝑉𝑉𝑐𝑐𝑖𝑖 
for the bending region of radius ρ of the storage ring and 

𝐻𝐻𝑏𝑏𝑛𝑛𝑏𝑏−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
1
2
�𝑃𝑃𝑖𝑖𝜕𝜕2 + 𝑃𝑃𝑖𝑖𝑖𝑖2 + 𝑃𝑃𝑖𝑖𝑖𝑖2 � +

1
2

[−𝑛𝑛 𝑥𝑥𝑖𝑖2 + 𝑛𝑛 𝑦𝑦𝑖𝑖2]
𝑖𝑖

+ 𝑉𝑉𝑐𝑐𝑖𝑖 + 𝑈𝑈𝑠𝑠 
for the non-bending region of the ring, where 

𝑉𝑉𝑐𝑐𝑖𝑖 = �
1

��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2 + �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�

2 + �𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗�
2𝑗𝑗≠𝑖𝑖

 

is the Coulomb potential,  

n = −
𝜌𝜌
𝐵𝐵0
𝜕𝜕𝐵𝐵𝑖𝑖
𝜕𝜕𝑥𝑥

,   
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑧𝑧

= −
𝑍𝑍0𝑒𝑒𝑒𝑒𝐸𝐸𝑠𝑠
𝐴𝐴0𝑐𝑐2

�
𝜌𝜌
𝑒𝑒𝛽𝛽𝛾𝛾

�
2

. 

Condition for Ground State Existence 
The storage ring must be alternating-gradient focusing 

operating below the transition energy, 𝛾𝛾𝑇𝑇: 
γ < 𝛾𝛾𝑇𝑇 . 

Although some colleagues may argue that this condition 
is equivalent to avoiding the negative-mass instability 
[16], we derived it from the very first principle that the 
beam-frame Hamiltonian is bounded [17]. It arises from 
the criterion of stable kinematic motion under Coulomb 
interaction when particles are subject to bending in a 
storage ring. 

Condition to Avoid Phonon Resonances 
The bare transverse phase advances per lattice period 

need to be less than 90°, i.e. 
𝜈𝜈𝜕𝜕,𝑖𝑖

𝑁𝑁𝑆𝑆𝑆𝑆
<

1
4

 

where 𝜈𝜈𝜕𝜕 and 𝜈𝜈𝑖𝑖 are the bare horizontal and vertical tunes, 
and 𝑁𝑁𝑆𝑆𝑆𝑆  is the lattice super-periodicity of the storage ring. 

Although some colleagues argue that this condition is 
equivalent to avoiding the envelope instability [18], we 
again derived it from the very first principle of single-
particle dynamics as the criteria that there is no linear 
resonance between the phonon modes of the crystalline 
structure and the machine lattice periodicity, and that 
linear resonance stopbands are not crossed during the 
entire cooling process as the 3-D beam density is 
increased.  

Ground State Structure  
The ground state structure is a 1-D chain when the 

beam line density is low [19]. The structure becomes 2-D 
lying in the plane of weaker transverse focusing if the line 
density λ in the machine is 

λ > 0.62𝛾𝛾ξ−1�min�νy2, νx2 − γ2��
1
3 

For even higher density, the particles arrange themselves 
into 3-D crystals, becoming helices and then helices 
within helices. Figure 9 shows such a multi-shell structure 
at a de-focusing location of the lattice. The maximum 
spatial density in the laboratory frame is approximately 
γνy�νx2 − γ2/(2ξ3) . If a sinusoidal electric field is 
present, the crystalline structure can be bunched 
azimuthally [18]. 
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Beam and Lattice Heating  
The minimum cooling rate needed for beam 

crystallization corresponds to the intra-beam scattering 
heating in an AG-focusing lattice. At any non-zero 
temperature the beam absorbs energy and heats up under 
time-dependent external forces caused by variations in 
lattice focusing and bending. In the high temperature 
limit, this intra-beam scattering results in a growth rate 
proportional to  λT−5/2. The peak heating rate occurs at 
the temperature of about T≈1 when the ordering starts to 
occur, as shown in Fig. 10. Typically, strong spatial 
correlation appears in all directions when the temperature 
is below T≈ 0.05. Lattice shear and AG focusing have 
similar effects on beam heating. Heating behavior is 
similar for both bunched and coasting beams.  

 

 
Figure 9: A multi-shell structure with particle positions 
projected into the x-y plane (λ = 25γξ−1). 
 

 
Figure 10: Typical heating rates as functions of 
temperature obtained by MD simulation at various line 
density, λ. 

The normalized temperature 𝑇𝑇 is related to be 
conventionally defined beam-frame temperature 𝑇𝑇𝐵𝐵  and 
laboratory-frame parameters by 

𝑇𝑇𝜕𝜕,𝑖𝑖,𝑖𝑖 =
𝑘𝑘𝐵𝐵𝜌𝜌2

𝐴𝐴𝐴𝐴0𝑐𝑐2𝛽𝛽2𝛾𝛾2𝑒𝑒2
𝑇𝑇𝐵𝐵𝜕𝜕,𝑖𝑖,𝑖𝑖 

where  

�𝑇𝑇𝐵𝐵𝜕𝜕 ,𝑇𝑇𝐵𝐵𝑖𝑖 ,𝑇𝑇𝐵𝐵𝑖𝑖� =
𝛽𝛽2𝛾𝛾2𝐴𝐴0𝑐𝑐2

2𝑘𝑘𝐵𝐵
�
𝜖𝜖𝜕𝜕
〈𝛽𝛽𝜕𝜕〉

,
𝜖𝜖𝑖𝑖
〈𝛽𝛽𝑖𝑖〉

,
1
𝛾𝛾2
�
𝛿𝛿𝛿𝛿
𝛿𝛿
�
2

�. 

Here, 𝜖𝜖𝜕𝜕,𝑖𝑖  are the unnormalized emittances, 𝛿𝛿𝛿𝛿 𝛿𝛿⁄  is the 
rms momentum spread,  〈𝛽𝛽𝜕𝜕,𝑖𝑖〉 are the average betatron 
amplitude function of the storage ring, and 𝑘𝑘𝐵𝐵  is the 
Boltzmann constant. 

CONDENSED MATTER METHODS FOR 
THR BEAM REST FRAME 

In this section, we outline the framework to 
numerically solve the Hamiltonian for crystalline beams 
in order to study their condensed matter properties. We 
will conclude with speculations and open questions. 

Method 
The derivation of the Hamiltonian [8] makes it 

convenient to study the condensed matter properties of 
crystalline beams in storage rings. It is straight forward to 
write a molecular dynamics program to simulate the 
motion of particles, either to cool down the beam using 
efficient but unrealistic cooling methods to find ground 
states, or to employ realistic cooling methods to simulate 
the dynamics of a crystalline beam. 

For condensed matter properties, it is desirable to 
separate the hopefully smaller time-dependent part in the 
Hamiltonian from the time-independent part, and then 
treat the time-dependent part as a perturbation. The time-
independent part of the Hamiltonian is obtained by the 
Smooth Approximation [8]. 

Recall that with the smooth approximation, the 
Hamiltonian is 

𝐻𝐻 = �
1
2
�𝑃𝑃𝑖𝑖𝜕𝜕2 + 𝑃𝑃𝑖𝑖𝑖𝑖2 + (𝑃𝑃𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑖𝑖)2�

𝑖𝑖

+
1
2
�(𝜈𝜈𝜕𝜕2 − 𝛾𝛾2)𝑋𝑋𝑖𝑖2 + 𝜈𝜈𝑖𝑖2𝑌𝑌𝑖𝑖2� + 𝑉𝑉𝑐𝑐𝑖𝑖  

The only part that needs special attention in molecular 
dynamics or other numerical studies is the long-range 
nature of Coulomb interaction between the particles, 
when the beam is uniformly spread throughout the storage 
ring, that is, not bunched. Periodic boundary conditions in 
the longitudinal direction can be applied in this case. 

Using the notation that L is the size of the periodic cell, 
𝜚𝜚 = √𝑋𝑋2 + 𝑌𝑌2 is radius in the transverse direction, N is 
the total number of particles in a cell, λ is the linear 
density, then the Coulomb energy per particle is 
   

𝑉𝑉𝑐𝑐
𝑁𝑁

=
1
𝑁𝑁𝑁𝑁

�Φ(𝜚𝜚𝑖𝑖𝑗𝑗 ,𝑍𝑍𝑖𝑖𝑗𝑗
𝑗𝑗<𝑖𝑖

) 

where 𝑍𝑍𝑖𝑖𝑗𝑗  is understood to be modulo L. 
The detailed algebra to efficiently calculate Φ(𝜚𝜚, 𝑧𝑧) had 
been worked out by Avilov [20] and Hasse [21]. Avilov 
[20] gives 

Φ(𝜚𝜚,𝑍𝑍) =
4
𝑁𝑁
� 𝐾𝐾0 �

2𝜋𝜋𝐴𝐴𝜚𝜚
𝑁𝑁

� cos �
2𝜋𝜋𝐴𝐴𝑍𝑍
𝑁𝑁

�
∞

𝑚𝑚=1

−
2
𝑁𝑁

[ln �
𝜚𝜚

2𝑁𝑁
�

+ 𝛾𝛾] 
Where 𝐾𝐾0(𝑟𝑟) is the zeroth order McDonald function, and 
𝛾𝛾 is the Euler constant. This expansion converges rapidly 
as long as 𝜌𝜌 is not near 0. 
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Based on Avilov, Hasse [21] gives another elegant 
formula: 

Φ(𝜚𝜚,𝑍𝑍) =
1

(𝜚𝜚2 + 𝑍𝑍2)1/2 −�
�−𝜚𝜚

2

4 �
𝜇𝜇

(𝜇𝜇!)2
𝑑𝑑(2𝜇𝜇)

𝑑𝑑𝑧𝑧(2𝜇𝜇)

∞

𝜇𝜇=0

[𝜓𝜓(𝑍𝑍)

+ 𝜓𝜓(−𝑍𝑍) + 2𝛾𝛾] 
Where  

𝜓𝜓(𝑍𝑍) + 𝜓𝜓(−𝑍𝑍) + 2𝛾𝛾 = −2�[𝜁𝜁(2𝑛𝑛 + 1) − 1]𝑍𝑍2𝑏𝑏
∞

𝑏𝑏=0

 

And 𝜁𝜁(𝑛𝑛)  is the Rieman zeta function of integer 
argument. This series converges fast when 𝜚𝜚 is small. 
In practice, we can use Hasse’s formula for small 𝜚𝜚 and 
Avilov’s formula for larger 𝜚𝜚. 

Ground States 
With Smooth Approximation and employing a 

downhill-type algorithm like conjugate gradient, we can 
calculate the time-independent ground state structures and 
energies. A typical ground state energy versus linear 
density curve is shown in Fig. 11.  

 
Figure 11: Typical ground state energy versus linear 
density of crystalline beams in storage rings. 
 

Figure 12 shows some example ground state structures 
when linear density increases. 

 
Figure 12: Examples of ground state structures. (a) Zig 
zag chain; (b) One shell; (c) A second shell starts to 
emerge in the center; (d) Multiple shells which resembles 
a lattice near the center. 

Phonon Spectrum 
Once the time-independent ground state structure is 

found, we need to find the excited states in order to study 
the effects of the time-dependent part of the Hamiltonian, 
as well as finite temperature properties. The low-lying 
excited states can be approximated by small vibrations of 
the particles, or phonons. Another important reason to 
study the phonon spectrum is that, as established earlier, a 
stabilization criterion is related to the highest phonon 
frequency [22]. 

The Coulomb interaction term is the only non-linear 
term that needs a small vibration expansion. Using capital 
letters (𝑋𝑋,𝑌𝑌,𝑍𝑍) to denote the coordinates of equilibrium 
positions and (𝑥𝑥�,𝑦𝑦�, �̃�𝑧)  the magnitude of the small 
deviations from the equilibrium position, applying 
periodic boundary conditions, the linearized equations of 
motion are [23] 
𝜔𝜔2𝑥𝑥�𝑖𝑖
= −𝑖𝑖𝛾𝛾𝜔𝜔�̃�𝑧𝑖𝑖 + (𝜈𝜈𝜕𝜕2 − 𝛾𝛾2)𝑥𝑥�𝑖𝑖

+ � �{�
1
𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗3 −

3�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�
2

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 � �𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛�𝑥𝑥�𝑗𝑗 − 𝑥𝑥�𝑖𝑖�
𝑁𝑁

𝑗𝑗=1

∞

𝑏𝑏=−∞

−
3�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗��𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗�

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 [𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑖𝑖]

−
3�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗��𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑗𝑗 − 𝑛𝑛𝑁𝑁�

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 [𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛��̃�𝑧𝑗𝑗 − �̃�𝑧𝑖𝑖]} 
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𝜔𝜔2𝑦𝑦�𝑖𝑖
= 𝜈𝜈𝑖𝑖2𝑦𝑦�𝑖𝑖

+ � �{−
3�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗��𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗�

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 �𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛�𝑥𝑥�𝑗𝑗 − 𝑥𝑥�𝑖𝑖�
𝑁𝑁

𝑗𝑗=1

∞

𝑏𝑏=−∞

+ �
1
𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗3 −

3�𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗�
2

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 � [𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑖𝑖]

−
3�𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗��𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑗𝑗 − 𝑛𝑛𝑁𝑁�

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 [𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛��̃�𝑧𝑗𝑗 − �̃�𝑧𝑖𝑖]} 

𝜔𝜔2�̃�𝑧𝑖𝑖
= 𝑖𝑖𝛾𝛾𝜔𝜔𝑥𝑥�𝑖𝑖

+ � �{−
3�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗��𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑗𝑗 − 𝑛𝑛𝑁𝑁�

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 �𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛�𝑥𝑥�𝑗𝑗

𝑁𝑁

𝑗𝑗=1

∞

𝑏𝑏=−∞

− 𝑥𝑥�𝑖𝑖� −
3�𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗��𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑗𝑗 − 𝑛𝑛𝑁𝑁�

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 �𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑖𝑖�

+ �
1
𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗3 −

3�𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑗𝑗 − 𝑛𝑛𝑁𝑁�2

𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗5 � [𝑒𝑒𝑖𝑖𝑖𝑖�𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗−𝑏𝑏𝑛𝑛��̃�𝑧𝑗𝑗 − �̃�𝑧𝑖𝑖]} 

 
Where 
𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗 = �(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)2 + (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗)2 + (𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑗𝑗 − 𝑛𝑛𝑁𝑁)2  and 
𝑖𝑖 = 1,2, … ,𝑁𝑁. It is understood that the 𝑅𝑅𝑏𝑏𝑖𝑖𝑗𝑗 = 0 term is 
excluded from the double sum. 

The double sum again has infinite number of terms, 
which seems to call for some algorithm, like the Ewald 
Summation, to perform it efficiently. However, 
considering that all the terms are in the order of 1

𝑅𝑅𝑛𝑛𝑖𝑖𝑗𝑗
3  

which is short ranged, and that modern computers are 
fast, it is probably easier to perform the sum by brute 
force to whatever accuracy required. 
Due to the long-range nature of the Coulomb interaction 
and the fact that this system is quasi one dimensional, the 
phonon spectrum has a singularity at 𝑘𝑘 = 0 . The 
singularity is very week, only logarithmic in nature, in the 
order of 𝑘𝑘(log(𝑘𝑘))1/2 , and does not seem to cause 
anything interesting. 

There is another somewhat significant difference 
between this phonon problem and traditional phonon 
problems – the frequency 𝜔𝜔 appears in the off-diagonal of 
the matrix. This is caused by the cross term between 𝑥𝑥 
and 𝛿𝛿𝑖𝑖 in the Hamiltonian. Fortunately when 𝜔𝜔 is real, the 
matrix is still Hermitian as expected. Because of this 
difference, a little extra work is needed to solve this 
matrix numerically compared to typical eigenvalue 
problems. We found that it is reasonably easy to solve this 
whole phonon problem by finding one 𝜔𝜔  at a time, 
iteratively until self-consistency. 

An example of phonon dispersion curves is shown in 
Fig. 13, and typical phonon densities of states are shown 
in Fig. 14. 
 

 
Figure 13: Example phonon dispersion curves. 

 
Figure 14: Example phonon densities of states.  

Other Considerations 
Is there a phase transition？ We have established 

earlier that in order for a crystalline beam to possibly 
exist, the storage ring has to satisfy 𝛾𝛾 <  𝜈𝜈𝜕𝜕 . What 
happens near 𝛾𝛾 =  𝜈𝜈𝜕𝜕? 

The partition function 𝑍𝑍 = 𝑇𝑇𝑟𝑟�𝑒𝑒−𝛽𝛽𝛽𝛽�  for the 
Hamiltonian under smooth approximation can be written 
as 

Ζ = �
2𝜋𝜋
𝛽𝛽
�
3
2𝑁𝑁

�
2
𝛽𝛽
�
3
2𝑁𝑁

�
1

(𝜈𝜈𝜕𝜕2 − 𝛾𝛾2)𝜈𝜈𝑖𝑖2
�

𝑁𝑁
2
ℤ(𝛽𝛽, 𝜈𝜈𝜕𝜕2 − 𝛾𝛾2, 𝜈𝜈𝑖𝑖2) 

Where ℤ(𝛽𝛽, 𝜈𝜈𝜕𝜕2 − 𝛾𝛾2, 𝜈𝜈𝑖𝑖2) is a massive integration too hard 
to calculate. 

The mean square displacement in the 𝑥𝑥 direction is 

〈𝑋𝑋2〉 = −
2
𝛽𝛽𝑁𝑁

𝜕𝜕 ln(𝑍𝑍)
𝜕𝜕𝜈𝜈𝜕𝜕2

=
1

𝛽𝛽(𝜈𝜈𝜕𝜕 + 𝛾𝛾)(𝜈𝜈𝜕𝜕 − 𝛾𝛾)

−
2
𝛽𝛽𝑁𝑁

𝜕𝜕 ln�ℤ(𝛽𝛽, 𝜈𝜈𝜕𝜕2 − 𝛾𝛾2, 𝜈𝜈𝑖𝑖2)�
𝜕𝜕𝜈𝜈𝜕𝜕2

 

Here is a leap of faith – assuming that the last term is 
analytic near 𝛾𝛾 =  𝜈𝜈𝜕𝜕 at 𝑇𝑇 = 0. The first term shows that 
there is a second order phase transition at 𝛾𝛾 =  𝜈𝜈𝜕𝜕 with a 
critical exponent 1. However, this is pure speculation. 
What the last term does is anyone’s guess, and 
temperature effects are also unknown. We do know that ℤ 
arises from the Coulomb interaction. If Coulomb 
interaction can be neglected, like at very high temperature 
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and low density, then ℤ is a constant, and the last term in 
〈𝑋𝑋2〉 is 0, and the phase transition we see here is exact. 

Reconcile with von Hove’s Theorem. von Hove’s 
theorem [24] is understood to mean the general non-
existence of phase transitions in 1D systems with short-
range interaction. A beam in a storage ring is a quasi 1D 
system (it only goes to infinity in the longitudinal 
direction, yet not zero in the other two dimensions) with 
long-range Coulomb interaction, thus does not fall to the 
category of von Hove’s theorem. However, it is helpful to 
understand the possible phase transition if we exam the 
argument underlining von Hove’s theorem. 

One of the arguments is given by Landau and Lifshitz 
[25]. The energy cost of a domain wall is finite, and the 
entropy caused by the number and locations of the 
domain walls is ∝ ln (𝑁𝑁) where 𝑁𝑁 is the size of the system, 
therefore the total free energy decreases when the number 
of domain walls increases at any finite temperature, until 
no macroscopic domains exist.  

In our quasi 1D system, the effect of the long-range 
Coulomb interaction on the energy cost of a domain wall 
is beside the point. We observe that in the possible phase 
transition, the “domain wall” is parallel to the longitudinal 
direction, thus the energy cost of such a “domain wall” is 
∝ 𝑁𝑁 . So the formation of such a “domain wall” is 
unfavorable, at least at low temperatures. 

“Magic Densities”. In private communications with 
Andy, we raised the question, are there magic densities 
where crystalline beams are more likely to be observed? 

The question arises from the observation that the 
ground state energy versus density curve has peaks and 
valleys. Near the peaks, it is less favorable for the density 
to stay constant throughout the storage ring, as depicted in 
a (unrealistic) example in Fig. 15. It is therefore more 
likely to find crystalline beams at densities near the 
minima of the curve. 

 
Figure 15: Possible “magic densities” if the ground 
state energy versus density curve has peaks and valleys. 
In this illustrative picture, two minima are assumed to be 
at densities d1 and d2. For a density d between d1 and d2, 
it is favorable to have a mixture of densities d1 and d2 
rather than a uniform density d. 

 TOWARDS ULTRA LOW 
TEMPERATURE 

Needless to say, it is important to ask whether any 
realistic cooling method is available to reach a crystalline 
ground state in practice. The Coulomb coupling constant 
Γ, defined as the ratio of the average Coulomb energy to 
the average thermal energy of a beam, is well above 100 
in an ideal crystalline state (while  in any regular 
beams). This typically corresponds to a temperature of a 
mK range, very close to the absolute zero! In the early 
1990’s, we only had few cooling methods technically 
well-established and applicable to hadron beams, i.e., 
“electron cooling” [26] and “stochastic cooling” [27]. 
These cooling techniques were, however, insufficient for 
our ultimate goal because of the achievable temperature 
much higher than mK. Andy thus paid attention to 
“Doppler laser cooling” [28,29]. Laser cooling was 
relatively new to the accelerator community and, as a 
matter of fact, only two European teams had just begun to 
apply this sophisticated technique to fast circulating ions 
in storage rings. The TSR group of Max Planck Institute 
[3] and the ASTRID group of Aarhus University [4] soon 
succeeded in demonstrating the promising potential of 
laser cooling experimentally. Theoretically, the Doppler 
cooling limit reaches the mK range or even lower, so we 
naturally concluded that this technique should be the only 
means for us to approach a crystalline state. 

Resonance Cooling 
We, however, immediately encountered a serious 

problem. We learned that laser cooling is effective only in 
the direction of beam propagation when ions are running 
at high speed along a particular orbit; no direct cooling 
force is obtainable in the directions perpendicular to the 
beam orbit because it is very difficult to ensure a 
sufficient spatial overlap between a tiny laser spot and 
fast traveling ions. Dieter Möhl joined us in 1993 to solve 
this difficulty and, a few months later, we wrote up the 
idea of using synchro-betatron coupling resonance to 
indirectly enhance the transverse cooling efficiency [10]. 
This simple idea was eventually employed at the storage 
ring S-LSR where a Japanese team successfully 
confirmed the expected transverse indirect laser-cooling 
effect under a coupling resonance condition [30,31] 

Tapered Cooling 
In an early stage of systematic MD simulations, we 
noticed that too strong a longitudinal linear frictional 
force could worsen the stability of a large (shell) 
crystalline configuration [14]. This effect is peculiar to a 
storage ring that has the momentum dispersion induced 
by bending magnets. In March 1997, we got together in 
Kyoto for a couple of weeks, made lots of discussion, and 
later published a couple of papers summarizing our 
thoughts at that moment [14,32]. It is well known that 
multi-shell Coulomb crystals can readily be produced in a 
compact ion trap with a Doppler cooling system. By 
contrast, we found it almost hopeless to stabilize such a 
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large 3D crystalline beam without the so-called tapered 
cooling force. Our MD results so far have strongly 
supported this conclusion [33]. We currently believe that 
the existence of momentum dispersion in a regular 
storage ring is one of the most serious obstacles to beam 
crystallization. In order to overcome the dispersive 
heating effect, an optimized tapered force must be 
developed. The effect of cooling is described by a 
reduction in 𝑃𝑃𝑖𝑖 in the cooling region by  

∆𝑃𝑃𝑖𝑖 = −𝑓𝑓𝑖𝑖(𝑃𝑃𝑖𝑖 − 𝐶𝐶𝜕𝜕𝑖𝑖𝑥𝑥) 
where the coefficient describing the strength of cooling 
is 𝑓𝑓𝑖𝑖 , and the coefficient describing the extent of 
tapering 𝐶𝐶𝜕𝜕𝑖𝑖  is proportional to the lattice dispersion.   
Alternatively, attempts have been made to design storage 
rings with dispersion eliminated all around the ring [34]. 
For this purpose, a unique bending element has been 
proposed and theoretically studied [35]. Shear-free ring 
lattices consisting of both magnets and electrodes were 
designed at S-LSR so that 3-D crystalline structures may 
be formed without using tapered cooling forces. 

Machine Lattice Periodicity Consideration  
The condition to avoid phonon resonance discussed in 

Section 2 is equivalent to avoiding the transverse 
collective instability driven by the periodic nature of the 
external alternating-gradient potential for beam focusing. 
No such instability occurs in a uniform focusing channel. 
We have repeatedly emphasized the importance of this 
effect from the very beginning of our fruitful 
collaboration because it imposes severe restrictions on the 
lattice design of a dedicated cooler ring. The betatron 
phase advance per lattice period has to be sufficiently 
small (most preferably, less than 90 degrees) to avoid 
crossing a strong linear resonance stop band during a 
cooling process toward beam crystallization 
[14,18,33,36,37]. This requirement is very difficult to 
meet in practice. As any machine involves finite 
mechanical errors in reality, the original lattice symmetry 
is always weakly broken. Even if all lattice elements were 
constructed perfectly and placed precisely at ideal 
positions, additional coupling sources introduced to 
enhance transverse laser-cooling efficiency inevitably 
disturbs the lattice in an asymmetric way. We have 
confirmed that such weak symmetry breaking can destroy 
or, at least, affect a large crystalline structure [33,35]. 
Even the dissipative interactions with laser photons every 
turn can deteriorate the crystal stability unless the cooling 
lasers are applied to the beam in all straight sections to 
strictly hold the symmetry of external forces. These facts 
suggest that the stabilization of a multi-shell crystalline 
beam in a storage ring is still quite challenging, although 
it seems possible to form and maintain the ordered 
configuration in a carefully designed cooler ring by 
keeping the cooling lasers on [38]. On the other hand, 
many past MD results have also shown that the 
production of the 1D string or 2D zigzag configuration is 
probably possible even in an existing storage ring. Most 
recent MD simulations have actually indicated the 
feasibility of stable string formation of ions in S-LSR 

with optimized lattice and laser parameters, despite that 
the ring is equipped with only a single, relatively low-
power laser [39]. 

DISCUSSIONS AND SUMMARY 
The crystalline beam corresponds to the ultimate state 

of zero temperature and zero emittance of charged particle 
beams. Andy was fascinated by the rich and challenging 
physics and worked with us as his hobby for more than 
twenty years. Our contributions range from the 
fundamental analytical formulation leading to guiding 
conditions of crystalline beam formation, to numerical 
methods and confirmation, and then to advising 
experimentalists in practical realization.  

Among practical purposes of beam crystallization, 
ordered multidimensional beams were proposed for ion-
ion colliders for increased luminosity [40]. Machine 
lattices of high or imaginary transition energy were 
proposed so that high-energy or colliding crystals may be 
realized in storage rings of moderate circumference. 
High-density 1-D strings were proposed for high-
luminosity ion-electron collisions with rare radioactive 
ions [41, 42]. 

Despite for the efforts made during the past three 
decades, only 1-D ordering was realized experimentally 
in storage rings using electron cooling or laser cooling. 
Higher density, 3-D crystalline structures were only 
realized in ion traps; efforts to form 3-D crystalline beams 
in storage rings have not been successful.  

Major challenges in beam crystallization are to design 
and construct storage rings with high lattice periodicity 
and low transverse phase advance to avoid linear 
resonances, and to implement effective beam cooling that 
conforms to the dispersive nature of the beam. 

Ion traps have been used to experimentally simulate 
features of an AG-focusing storage ring [43]. However, it 
is difficult to study with such a set up the shear effects of 
the bending magnets in storage rings [44,45]. 
Combination of a storage ring and an ion trap may 
simulate the environment of colliding crystals.  

Some fundamental questions remain to be answered. 
Crystalline beam corresponds to a new state of matter of 
one-component plasma where particles are confined by a 
periodic, time-dependent external potential with finite 
transverse boundary. Basic condensed-matter physics of 
such a system including phase-transition properties 
remains to be studied. 

Since a 3-D crystalline beam has not been observed, the 
most fundamental question is, does a crystalline beam at a 
higher density (other than a 1-D string) really exist? If 
not, why? If yes, under what conditions? There are many 
variables in the equation, a thorough theoretical 
understanding and then a comprehensive numerical study 
of the phase diagram would be most helpful. This is 
apparently not an easy task. We envision that the first 
realistic step is to fully understand the already observed 
phase transition at very low density. It seems to be first 
order in nature, and progress has been made for its 
understanding. But why does the transition happen at that 
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density? Is it related to the phase transition near 𝛾𝛾 =  𝜈𝜈𝜕𝜕 
that we speculated? Hopefully an understanding of this 
transition will have some predicting power and shed 
lights on higher density conditions. 
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