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Abstract

The low energy RHIC electron cooling (LEReC) project

at Brookhaven employs a linac to supply electrons with ki-

netic energies from 1.6 to 2.6 MeV. Along with cooling

the stored ion beam the electron bunches create a coherent

space charge field which can cause emittance growth. This

process is investigated both analytically and through simu-

lation.

INTRODUCTION AND THEORY

The low energy RHIC electron cooling project is cur-

rently under construction at BNL. We are using an elec-

tron linac with bunch lengths of a few centimeters to cool

gold beams with lengths of several meters. Let γ be the

Lorentz factor of the ions, αp be the momentum compaction

factor, σp be the rms fractional momentum spread, η =

1/γ2
t − 1/γ2, and T0 be the revolution period. The rms lon-

gitudinal slip per turn is σslip = T0 |η |σp. Table 1 shows this

and other RHIC parameters.

Table 1: Gold Beam Parameters

parameter γ = 4.1 value γ = 6.0 value

σtg(ns) 11.7 9.6

σp 3.5 × 10−4 3.8 × 10−4

Nion 6 × 108 1 × 109

emittance µm 2.5 2.5

f0 (kHz) 75.8 77.2

σslip(ps) 280 127

Table 2: Electron Beam Parameters

parameter γ = 4.1 value γ = 6.0 value

σte(ps) 100 67

σp 4 − 8 × 10−4 4 − 8 × 10−4

Qe(pC) 65 − 130 78-156

emittance µm 1-2 1-2

bunch spacing (ns) 1.42 1.42

bunches per train 31 25

The electron parameters are still under discussion but

ranges are shown in Table 2. In the tablesσtg andσte are the

root mean square (rms) bunch durations, Qe is the electron

bunch charge, and Nion is the number of ions per bunch.The

emittance is the rms normalized emittance. There is a train
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of electron bunches of length ∼ 4σtg as illustrated in Fig-

ure 1. For all cases one has σte < σslip which means that if

an ion is subjected to a maximal space charge force on one

turn it will not be subject to a significant force on the next

turn. Unpublished work by Gang Wang and Vladimir Litvi-

nenko has shown that it is critical that the electron bunches

not slip with respect to the ion bunches. We assume this is

the case but this still leaves the possibility of synchrobeta-

tron resonances.

To study these resonances assume the cooling section is

centered on β∗ with α∗
= 0 and take the transverse ion co-

ordinates to be x and p = β∗x′ so that the one turn matrix

is just a rotation with phase advance ψ0 = 2πQx . As a first

approximation assume a single electron bunch centered on

the ion bunch so that an ion interacts with it twice per syn-

chrotron oscillation. Assuming the electron bunch has fo-

cusing strength k the map for half a synchrotron oscillation

is

[

xn+1

pn+1

]

=


cos

πQx

Qs

sin
πQx

Qs

− sin
πQx

Qs

cos
πQx

Qs



[

1 0

β∗k 1

]

=

[

xn
pn

]

,

(1)

where Qs is the synchrotron tune. When Qx/Qs is close to

an integer the map is unstable. Taking sin(πQx/Qs ) = ǫ

and assuming an eigenvalue λ = 1 + δ one finds δ ≈
√

β∗kǫ − ǫ2. The resonances for LEReC are typically very

weak with β∗k ∼ 10−5. When coupled with the small frac-

tion of time the ions interact with the electrons one expects

a very small fraction of the beam would be harmed by these

resonances. However there is another important dynamical

effect. Longitudinal intrabeam scattering causes the longi-

tudinal action to wander and with it the synchrotron tune.

This causes individual particles to wander back and forth

through resonances, usually increasing betatron amplitude

with each passage. If we look at it in terms of statitical aver-

ages the average increase in amplitude will be proportional

to the maximum growth and the fraction of time growing is

proportional to the resonance width. Since both terms are

linear in the charge of the electron bunch one expects the

emittance growth rate to scale as the square of the electron

bunch charge.

A better model can be obtained using perturbation the-

ory. Since we only consider a matrix and a thin lens cool-

ing region we take |Qx | < 1/2. The equations of motion

are generated by the hamiltonian

H (x,p; θ) =
Qx

2

(

p2 + x2
)

+ δp (θ)Fe (τ) ln
(

1 + x2/a2
)

,

(2)
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where we use azimuth θ as the time-like variable, τ = τ(θ)

is the arrival time of the ion relative to the synchronous par-

ticle, a characterizes the radius of the electron beam,

δp (θ) =

∞
∑

k=−∞

δ(θ − 2πk) =

∞
∑

m=−∞

e2πimθ

2π

and

Fe (τ) =
−β∗Z0Ie (τ)ℓ

4π β3γ3mc2/q
.

In Fe we have a cooling section of length ℓ, β = v/c, Z0 =

377Ω, Ie (τ) is the electron current, and the ion has charge

q and mass m. In the simplest approximation take ln(1 +

x2/a2) ≈ x2/a2 and δp (θ) ≈ 1/2π. This leaves only the

slow variation associated with τ(θ). Assuming interaction

with a single synchrotron harmonic we have

d2x

dθ2
= −Q2

x x − 2QxĈ cos(pQsθ), (3)

where pQs = 2Qx + δ with |δ | ≪ 1 and

Ĉ =

��������

2π
∫

0

dψs

2π
e
ipψs

Fe (τ̂ cosψs )

πa2

��������
, (4)

where τ̂ is the amplitude of the synchrotron oscillation.

Equation (4) leads to parametric resonances [1]. The am-

plitude of oscillation grows as esθ with

s =
1

2

√

Ĉ2 − δ2.

As with the previous analysis the strength and width of

the resonance are both proportional to the electron bunch

charge. When synchrotron tune wander is included it fol-

lows that this analysis also predicts the emittance growth

rate should scale as the square of the electron bunch charge.

The previous analyses assumed a linear restoring force

for the electrons. While a detailed non-linear analysis has

not been obtained a few general comments are in order. First

we use action angle variables with x =
√

2J cosψ and the

slow approximation on (2) yielding.

H (J,ψ; θ) = Qx J +
Fe (τ)

2π
ln


1 +

2J cos2 ψ

a2


 (5)

= Qx J +
Fe (τ)

2π

∞
∑

m=0

an (J/a2) cos(2mψ). (6)

Define b = J/a2. For m = 0 we find [2]

a0(b) = ln



1 + b +

√
1 + 2b

2


 . (7)

For m > 0

am (b) =
−2

m




−b

1 + b +
√

1 + 2b



m

. (8)

The detuning term in the Hamiltonian increases without

bound as b increases but the change in tune will be quite

small. The other terms am (b) are bounded by 2/m even as

b → ∞ so the driving terms saturate with betatron ampli-

tude. For our parameters it is likely the single resonance

approximation will hold at any given τ̂ but the important

resonance could change with τ̂. It is also likely that other

sources of detuning will dominate a0 but these are easily

added.

SIMULATIONS

The simulation code is based on a simple one turn map for

the ions and a thin lens treatment of the electron-ion inter-

action. The one turn map is defined by betatron tunes, cou-

pling, chromaticities, detuning coefficients and sine wave

RF. Also we include longitudinal IBS with total growth rate

given by Piwinski’s [3]coasting beam formula and Zenke-

vich’s [4] viscous force. Transverse IBS is not included be-

cause the model assumes a uniform focusing lattice which

yields negative growth rates. Actual rates are about 10% of

the longitudinal rates [5].Transverse space charge is imple-

mented as a phase shift that is a function of betatron ampli-

tude and longitudinal position within the bunch.

The electron ion interaction consists of a coherent space

charge kick where the electron bunch is taken to be a 3 D

gaussian. Electron cooling is non-magnetized and treated

with the Coloumb logarithm outside the integral. The local

density is multiplied by a cooling force that has the same

form as the electrostatic force [6]. The electron beam is

assumed round and the cooling force is calculated at the

start of the simulation and stored in a two dimensional array.

A version where only one transverse variable is tracked has

also been developed.

We begin by determining what parameters are relevant to

the dynamics. Figure 2 shows results for γ = 4.1 but with

10 times the nominal electron bunch charge to speed things

up. We can draw several conclusions. First, the two dimen-

sional (2D) simulation in red with chromaticity ξ = −2 is

quite similar to the one dimensional version shown in blue.

We conclude the second transverse dimension is not funda-

mental to the emittance growth, justifying our earlier 1D

analysis. The magenta and green curves in Figure2 show

the nihl effect of changing chromaticity. The purple and

navy lines show the effect of reducing the longitudinal IBS

by factors of 10 and 100, respectively. There is clearly an ef-

fect but it is weak. For no IBS the blue line shows no growth,

hence some IBS is necessary for emittance growth. Finally

the yellow curve shows the effect of linear RF. Clearly the

growth is much reduced when the synchrotron tune does not

depend on synchrotron amplitude.

Figure 3 shows the effect of 5 different initial random

seeds with 1000 and 10,000 simulation particles. The

slopes of all the curves are very simular showing that the

emittance growth does not depend on microscopic details.

Figure 4 shows the growth rate of the emittance for 2D

simulations as the betatron tunes vary for 1000 and 10,000
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macroparticles. The growth rates change by factors of two

in a nonuniform way with tune, verifying that emittance

growth is a resonant phenomena.

Figures 5 and 6 show emittance growth rates as a function

of electron bunch charge for 1D and 2D beams respectively.

For each curve we used linear least squares to fit

ln


d ln ǫ

dn


= a + bQe + error, (9)

with parameters a and b where Qe is the electron bunch

charge. The curves in Figures 5 and 6 are labeled by the

betatron tune and the fitted value of b. For 1D we have 1.8 ≤
b ≤ 2.16 and for 2D 1.68 ≤ b ≤ 2.14 which agrees with

the value of 2 obtained by our earlier analysis.

Figures 7 and 8 show best guess results for the situation

in RHIC. For both cases the smaller emittance and lower

intensity gives the best transverse cooling.
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Figure 1: Ion and electron currents for γ = 4.1 with 65 pC

electron bunches.
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Figure 2: Simulations of emittance growth for a range of

parameters, see the text for details.
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Figure 3: Emittance versus time for identical physical pa-

rameters with different random seeds and number of simu-

lation particles.
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Figure 4: Growth rate as a function of betatron tune. The

fine structure implies many resonances are relevant.
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Figure 5: Growth rate versus bunch charge for 1D simula-

tions. The curves are labeled by the non-integer part of the

betatron tune and the power law for the growth rate obtained

by fitting equation (9).
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Figure 6: Growth rate versus bunch charge for 2D simula-

tions. The curves are labeled by the non-integer part of the

betatron tune and the power law for the growth rate obtained

by fitting equation (9). Curves for power laws of 1.5 and 2

are shown for comparison.
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Figure 7: Ion emittance versus time for γ = 4.1 for various

electron beam parameters:

A, σp = 4 × 10−4, ǫ = 2 µm, Qe = 130 pC;

B, σp = 4 × 10−4, ǫ = 1 µm, Qe = 65 pC;

C, σp = 8 × 10−4, ǫ = 2 µm, Qe = 130 pC;

D, σp = 8 × 10−4, ǫ = 1 µm, Qe = 65 pC.

CONCLUSION

Using bunched beams for electron cooling can lead to dy-

namically generated emittance growth. There are 3 required

ingredients:

1. electron bunches that are of comparable length to the

rms longitudinal slip per turn of the ions,

2. variation of the synchrotron frequency with amplitude,

3. longitudinal intrabeam scattering, although the depen-

dence on rates is weak.

The emittance growth rate of the ions scales (approxi-

mately) like the square of the electron bunch charge. This

was motivated theoretically and verified using simulations.
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Figure 8: Ion emittance versus time for γ = 6 for various

electron beam parameters:

A, σp = 4 × 10−4, ǫ = 2 µm, Qe = 156 pC;

B, σp = 4 × 10−4, ǫ = 1 µm, Qe = 78 pC;

C, σp = 8 × 10−4, ǫ = 2 µm, Qe = 156 pC;

D, σp = 8 × 10−4, ǫ = 1 µm, Qe = 78 pC.

ACKNOWLEDGMENT

This work followed from earlier unpublished work by

Gang Wang and Vladimir Litvinenko. The present work

has benefitted from conversationswith Alexei Fedotov, Wol-

fram Fischer and Yun Luo.

REFERENCES

[1] See e.g. section 27 of Landau and Lifshitz, Mechanics 3rd

edition, Pergamon (1989).

[2] See 4.224.9 and 3.613.3 in Gradshteyn and Ryzhik Table of

Integrals Series and Products academic press, 1980.

[3] A. Piwinski in Handbook of Accelerator Physics and Engi-

neering, Eds A. Chao and M. Tigner, p125, World Scientific

(1999)

[4] P. Zenkevich, O. Boine-Frankenheim, A. Bolshakov, NIMA,

Vol 561, Issue 2, p284 (2006).

[5] Alexei Fedotov, private communication.

[6] H. Poth, Physics Reports, Volume 96, No 3&4 (1990).

Proceedings of COOL2015, Newport News, VA, USA WEXAUD02

Electron Cooling

ISBN 978-3-95450-174-8

135 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


