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Abstract 
Traditional theoretical description of stochastic cooling 

process involves either ordinary differential equations for 
desired rms quantities or corresponding Fokker-Planck 
equations. Both approaches use different methods of deri-
vation and seem independent, making transition from one 
to another quite an issue, incidentally entangling somewhat 
the basic physics underneath. On the other hand, treatment 
of the stochastic cooling as Wiener process and starting 
from the single-particle dynamics written in the form of 
Langevin equation seems to bring more clarity and integ-
rity. Present work is an attempt to apply Wiener process 
formalism to the stochastic cooling in order to have a sim-
ple and consistent way of deriving its well-known equa-
tions. 

INTRODUCTION 
There are two traditional approaches for theoretical de-

scription of the stochastic cooling process – studying pa-
rameter evolution of either a single particle or a particle 
distribution function [1].  

The single particle approach involves ordinary differen-
tial equations for the rms-particle (i.e. having rms value of 
a given parameter). The equations are derived by calcula-
tion of the first two moments of the kick for a random par-
ticle. The cooling process is then described with a coherent 
effect, which is a particle’s own signal, and incoherent ef-
fect, which includes all noises for the particle. 

The other approach involves Fokker-Planck equations 
for the particle distribution functions. The derivation is ei-
ther straightforward and based on the continuity equation 
analogues to the usual drift-diffusion equation derivation 
[2] or thorough and based on basic kinetic equations in-
volving all other particle interactions with following sim-
plifications [3]. In this case the cooling is described with 
quite similar coherent and incoherent terms, which are in-
troduced as drift and diffusion coefficients of the Fokker-
Planck equation. 

The approach, involving treatment of particle distribu-
tion functions over given parameters, is more appropriate 
for the stochastic cooling simulation, unless we are inter-
ested in the initial cooling time or fast draft calculations. 
Nevertheless, single particle approach is the main tool for 
the betatron cooling simulation, since the diffusion term is 
defined by longitudinal dynamics and in this case could be 
considered constant (or defined by a function). 

The connection of coherent and incoherent effects be-
tween different approaches was mentioned casually in [4], 
but it was never explicitly used. Eventually each approach 
requires its own derivation of coherent and incoherent 
terms. But both single particle and particle distribution 
function descriptions use the same underlying model of the 
cooling process, which involves particle beam, accelerator 
and stochastic cooling system. This process appears to be 

a continuous Wiener process (or Brownian process), and 
corresponding formalism could be immediately applied to 
the stochastic cooling, giving a straightforward and clear 
way of deriving the equations and its’ coefficients. 

LANGEVIN EQUATION 
Consider an ensemble of non-interacting particles orbit-

ing in an accelerator and undergoing a stochastic cooling. 
We are interested in the evolution of some parameter ݔ 
(momentum spread, emittance, rms betatron amplitudes, 
etc.) of an arbitrary particle under influence of stochastic 
cooling system. On each revolution every particle receives 
a correction kick, or parameter change, from the cooling 
system, that is the sum of the self-signal of that particle 
(coherent signal ݔ௖) and some random noise signal due to 
signals from other particles and noises in the electronics 
(incoherent signal ݔప௖෦ ): 

 Δݔ௞௜௖௞ = ௖ݔ + ప௖෦ݔ . 
 
 Since particle parameter depends solely on its present 

state and kick’s interval (revolution period) in most cases 
could be considered much smaller than cooling time ( ଴ܶ ≪߬஼௢௢௟), the process of stochastic cooling is a continuous 
Wiener process and all related formalism could be directly 
applied. 

The starting point is then a derivation of a corresponding 
Langevin equation. The drift ܨ and diffusion ܦ coefficients 
could be defined in a usual way as: 

,ݔ)ܨ  (ݐ = ଴݂Δݔ௖(ݔ, ,ݔ)ܦ ,(ݐ (ݐ = 1 2 ଴݂Δݔ௜௖ଶ⁄ ,ݔ)  ,(ݐ
where Δݔ௜௖ଶ = 〈Δݔ௞௜௖௞ଶ 〉, ଴݂ – revolution frequency. 

 
Then for the given model of stochastic cooling process 

with non-constant diffusion the corresponding Langevin 
equation will have the following form [5]: 

ݐ݀ݔ݀  = ܨ + 12 ݔ߲ܦ߲ +  (1)                     ,(ݐ)ߦܦ√
where (ݐ)ߦ represents Gaussian white noise with the fol-
lowing statistics:  
〈ߦ〉  = 〈(ᇱݐ)ߦ(ݐ)ߦ〉 ,0 = ݐ)ߜ2 −  .( ᇱݐ
 

The summand with diffusion derivative in the Equation 
(1) is needed to compensate the effect of non-constant dif-
fusion, a so-called noise-induced drift, which will be intro-
duced later. The logic behind is the same as in explanation 
of Fick’s law of diffusion, some additional details could be 
found in [5]. The Equation (1) could be used for tracking 
simulations in a software like Betacool in order to include 
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different effects like IBS or electron cooling altogether in 
the similar fashion. 

TIME-AVERAGED DIFFUSION 
The standard procedure for deriving the equations within 

single-particle approach is to calculate the second moment 
of the kick, such treatment could be found for example in 
[4]. Here is given simpler, but not that mathematically 
strict derivation. 

We anticipate that the incoherent effect for a given par-
ticle has a following statistics: 

௜௖ۧݔۦ  = ప௖෦ݔ〉 0 ଶ〉 = Δݔ௜௖ଶ  
 

So, on the long-term average we expect that: 
ݐ݀݀  ଶݔ = ൭12 ݔ∂ܦ∂ + ൱ଶതതതതതതതതതതതതതതതതതതതതതതതത(ݐ)ߦܦ√ = ଴݂Δݔ௜௖ଶ =  .ܦ2
 
By processing the derivative, formula for the incoherent 
dynamics is derived: 
ݐ݀ݔ݀  = ݔܦ . 

 
Summing up coherent and incoherent effects for the single 
particle the following equation is derived: 
ݐ݀ݔ݀  = ܨ + ݔܦ .                                    (2) 
 
Such derivation is valid, because the white noise is consid-
ered. Equation (2) could be rewritten for the rms-particle 
(at a given time) in the more traditional form, involving 
cooling time ߬(ݐ): 
 1߬ = − ௥௠௦ݔ1 ݐ௥௠௦݀ݔ݀ = − ௥௠௦ݔܨ − ௥௠௦ଶݔܦ . 

 
Eventually, the single particle approach is completely 

described by the Equation (2). As a simple example, it can 
be shown that Equation (2) for oversimplified problem co-
incide with the well-known time-domain formula [4]. Con-
sider: 

 Flat distribution of ܰ particles 
 Δݔ௖ =  coherent correction is proportional to ,ݔߣ−

the particle’s parameter value 
 ݔ߂௜௖ଶ = ଶߣ ∙ ଶݔ ௦ܰ + ଶߣ ∙ ܶℎ݁݁ݏ݅݋݊ ݈ܽ݉ݎ, inco-

herent correction is proportional to the sum of par-
ticles’ signals in the sample ௦ܰ = ܰ (2ܹ ଴ܶ)⁄  and 
a thermal noise 

Under given assumptions, the equation for the rms-particle 
simplifies to 1߬ = ܹܰ ሾ2݃ − ݃ଶ(1 + ܷ)ሿ, 
where ݃ = ߣ ௦ܰ,  ܷ = ܶℎ݁݉ݎ. ଶݔ)/݁ݏ݅݋݊ ௦ܰ). 

FOKKER-PLANCK EQUATION 
Consider a following generic Langevin equation with the 

same statistics for (ݐ)ߦ as in Equation (1): 
ݐ݀ݔ݀  = ,ݔ)ܽ (ݐ + ,ݔ)ܾ  .(ݐ)ߦ(ݐ

 
This generic Langevin equation has a corresponding deter-
ministic Fokker-Planck equation of the form (see e.g. [6]):  
 ∂Ψ∂ݐ = − ݔ∂∂ ൤൬ܽ + 12 ܾ ൰ݔ∂ܾ∂ Ψ൨ + ∂ଶ∂ݔଶ (ܾଶΨ). 
 
The function Ψ is a probability distribution of a single par-
ticle, but mathematically it is identical to the particle dis-
tribution function when ܰ → ∞, which could be consid-
ered true for typical beam intensities. The summand under 
derivative ଵଶ ݃ ப௚ப௫ is a so-called noise-induced drift. To com-
pensate this drift, the additional summand was added in the 
original Langevin Equation (1), otherwise diffusion term 
could lead to cooling. 

Consequently, the corresponding Fokker-Planck equa-
tion for the given Langevin Equation (1) will have its tradi-
tional for stochastic cooling form: 

 ∂Ψ∂ݐ = − ݔ∂∂ (Ψܨ) + ݔ∂∂ ൬ܦ ∂Ψ∂ݔ ൰. 
 
While without this compensational term there would have 
been a different and incorrect form of the equation: 
 ∂Ψ∂ݐ = − ݔ∂∂ (Ψܨ) + ∂ଶ∂ݔଶ  .(Ψܦ)
 
It was quite an issue in the early days, which form of equa-
tion is suitable for the stochastic cooling, and there was 
provided a dedicated experiment to verify the correct form 
of equation [7]. 

For the simplified example introduced earlier, the corre-
sponding Fokker-Planck equation could be written in the 
following form: 

 ∂Ψ∂ݐ = WN ൤2݃ ݔ∂∂ (Ψݔ) + ݃ଶ(1 + ܷ) ݔ∂∂ ൬ݔଶ ∂Ψ∂ݔ ൰൨. 
CONCLUSION 

The stochastic cooling theory was formulated as contin-
uous Wiener process. Such treatment derives the well-
known equations in a clear and natural way, and besides it 
provides: 

• Langevin equation for tracking simulations 
• General form of equation for the single particle 

approach 
• Explanation of the Fokker-Planck equation form 
• Same well-established drift and diffusion coeffi-

cients for three theoretical approaches (incl. par-
ticle tracking). 
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