
HARDWARE SIMULATION KIT FOR BEAM INSTRUMENTATION
Arkady Lokhovitskiy, Danil Kortchaguin, JINR, Dubna, Russian Federation

Michael Ludwig, CERN, Geneva, Switzerland

Introduction
For beam instrumentation front-end software

consolidation in the CERN-PS AB-BDI-SW section has
launched a campaign in collaboration with the Joint
Institute for Nuclear Research (JINR) in Dubna (Russia).
This consolidation is to a large extent re-engineering of
legacy front-end software of the running CERN-PS
machine. This raises the following issues: standardization,
simulation of non active timing events, simulation of non
available hardware, and backward compatibility. This
paper describes a beam instrumentation hardware
simulation, which is used to develop, test and validate
instrumentation software, which are disconnected from
the real hardware and machine timings.

CONSOLIDATION
The aim of this consolidation is to replace

instrumentation servers in our front-end computers
(FECs) which have reached the end of their lifecycle after
more than a decade by completely re-engineered
instrument servers for the LHC Injector chain. Directly
affected are 15 FECs for beam current measurements
hosting in total 279 devices and 8 FECs for beam position
measurements with 357 devices, all of which are
�24h/7d� mission critical. The new servers have to cover
all functionality of the existing software, provide a high
degree of backward compatibility in order to avoid
software incompatibility in the client application layer,
and provide subscription, structured properties, a data
subset selection mechanism, object oriented design and
code generation using graphical design tools. All these
new features are needed to satisfy the increased demands
of the LHC era. New servers are test-deployed and
validated on a per-FEC basis under operational conditions
with beam in dedicated software machine development
sessions: this is normally the first time a new server runs
with real hardware.

CONSTRAINTS

Standard Framework
The Front-End Software Architecture (FESA)

framework [1] is the new framework which is used to
overcome the current diversity in the LHC injector chain
front end equipment software domain and pave the way
towards LHC for efficient development, diagnostic and
maintenance in this area. All data retrieving and
processing is going through two types of actions: real-
time (RT) actions and communication (COMM) actions.
RT actions are scheduled according to timing maps and
manage control and acquisition data flows between the

hardware and a common shared memory region called
FESA device. COMM actions are scheduled according to
users� requests and transmit data to client applications.

Instrument Functional Model
An instrument server generally performs many

acquisitions from different hardware modules at different
moments during the production of a type of a beam*,
processes them according to the logic of the measurement
and then publishes the results for each type of beam
separately�. The result data must be available and
consistent for at least the duration of one cycle (of a given
type), so that the application client can pick it up before it
is overwritten by the next cycle of the same type.

Backward Compatibility
FESA is not fully backward compatible with the

present control system (referred to as general modules
GM) and existing naming conventions [1]. The GM type
software clients are interfaced to FESA using a system of
special GM classes for each instrument which connect to
a set of FESA properties for this instrument (FESA2GM
adapter). Each GM class provides full inheritance to the
GM super classes at the same time. Thereafter, the GM-
specific communication channels: local GM access in the
FEC, the common middleware servers (CMW) and the
remote procedure calls (RPC) servers can be used
transparently. Correspondence maps between old and new
properties and devices, which provide also many-to-one
relationships, are used to overcome naming
incompatibilities and to regroup devices in the re-
engineered instruments.

STANDARDIZATION
In the context of the consolidation project [3] we deal

with a lot of hardware module types and different coding
principals. At the same time there are no common
patterns to standardize and simplify hardware module
calls as the FESA does with an instrument design. This
requires finding some solution to provide an abstraction
as a standardized approach to HW interaction design in
FESA, including instrument simulation. The abstraction
has to solve the following issues:
• Support a vastly heterogeneous structure of

equipment and coding technologies present in
CERN.

* A beam is produced during a cycle. A sequence of several (usually
different) cycles forms a supercycle.
� The results are multiplexed in pulse-to-pulse (=cycle) modulation
(PPM) slots of the device memory.

Proceedings of DIPAC 2005, Lyon, France POW010

DIPAC Poster Contribution 261

• Reuse efficiently existing code/design and provide
high expansibility to work with new hardware
module types at a later time.

• Simulate a hardware module behaviour to test and
validate instruments, which are disconnected from
the real hardware. Exclude an instrument rebuilding
at switching on/off the simulation mode.

• Ensure compatibility with FESA framework and
device drivers installed on FECs of the LHC
complex.

HARDWARE SIMULATION KIT

The hardware simulation kit represents a layer between
the FESA framework and hardware application
programming interface HW-API (see Figure 1). It’s based
on an object oriented approach to closely link the
software to the hardware module [4][5] and allow its real
control or its simulation. In addition it allows us to switch
from the real world to simulation and vice-versa in a
transparent manner, just by configuration.

Drivers

VME

HW-API

Instrument Class
FESA framework

Hardware Simulation Kit

RT Classes

FESA

Simulator

Sim
ulation classes

C
ode generation

Simulation
Flag

Hardware modules

IO libraries

Figure 1: Component cooperation diagram. Here, a
dashed line means a relation, a solid line with an arrow �
an invocation, a solid line with a circle � a public
interface, a circle with an arrow � data flow direction.

It provides:

• standardization of hardware interaction design within
the FESA framework,

• the simulation functionality to efficiently develop
and test instrumentation servers which are partially
or entirely disconnected from real hardware,

• an extension interface to develop specific classes for
new hardware module types and thus extend the
simulation toolkit .

The hardware simulation kit implements pairs of

related classes for each hardware module type with a set
of default methods to perform read/write or in/out actions:
one class is to be used in an RT process to both modes
working with real hardware and simulation, the second
one is to design an instrument specific simulator that has
to be a separate process running on the same FEC where
instrument binaries were deployed. All the methods
calling a real hardware are virtual and can be redefined in
derived classes in course of an instrument development

Beside read/write and in/out all other types of actions
controlling hardware (initialize, restart, start and stop
scanning, etc.) can have unpredictable function and
coding principals. As described above the standardization
nevertheless requires giving an interface to extend a base
class functionality adding instrument specific actions. To
solve this problem in the hardware simulation kit they
have been excluded from a device class scope and
implemented as an independent branch of the class
hierarchy (see Figure 2 � Device command components).

The hardware simulation kit also contains a set of
abstract template classes imposing a protocol to add new
types of hardware modules. They are a public interface of
Abstract Template Classes component (see Figure 2).
Have implemented all the abstract methods in a derived
class for a new hardware module type will get available
for end-users.

Abstract Template Classes

«interface»
Sampling Hardware

«interface»
Digital IO Hardware

Design new hardware types

Hardware specific classes

Sampling Hardware Digital IO hardware

1�* 1�*

RT classes

Simulation classes

Device commands

Desing new commands (actions)

Figure 2: The hardware simulation kit component
diagram (a dashed line means a relation (1�* - one-to-
many), a solid line with a circle � a public interface).

POW010 Proceedings of DIPAC 2005, Lyon, France

262 DIPAC Poster Contribution

SUMMARY
Simulation of instrumentation hardware (including

timing [6]) is essential in order to efficiently develop and
test instrumentation servers within the consolidation
scenario for the LHC injector chain. The constraints of
standardization, backward compatibility and instrument
functionality are addressed, so that the consolidated
instrument can be deployed on a per-FEC basis with
minimized impact on operations.

At present a few instrument servers based on the
hardware simulation kit are in progress. They measure or
simulate a beam current and orbits using the following
types of standard hardware modules: MPV908, SIS3300,
DPRAM, and ICV196. They allow us to access the
efficiency of the proposed implementation.

REFERENCES
[1] "FESA Essentials", http://project-

fesa.web.cern.ch/
[2] "Guidelines and Conventions for Defining

Interfaces of Equipment Developed Using
FESA", AB-Note, CERN, 2005.

[3] "Consolidation Programme for CERN
Accelerators", P. Bonnal, R. Forrest, J. Poole,
AB-Note-2005-018, CERN, 2005.

[4] "MPV908 Operating Manual � Analog I/O
Series ", Pentland System LTD, 1996.

[5] "General Sampler Class Specifications", C.H.
Sicard, F. di Maio, PS-CO-Note-94-62, CERN,
1994.

[6] "The 8ESA Simulation Timing Event Source",
M. Ludwig, CERN, 2005.

Proceedings of DIPAC 2005, Lyon, France POW010

DIPAC Poster Contribution 263

