
KINETIC TREATMENT OF THE HEAVY ION
CHARGE EXCHANGE INJECTION

D. Dinev
Institute for Nuclear Research and Nuclear Energy, 72 Tzarigradsko chaussee, 1784 Sofia, Bulgaria

E - mail: dinnet@inrne.bas.bg

Abstract

  The paper represents the results of a kinetic treatment
of the charge exchange injection of heavy ions into
synchrotrons.
   Analytical expressions for the particle density evolution
in the transverse phase plane and for the emittance
growth due to the elastic scattering and to the energy
losses in the stripper have been derived.
   Numerical examples for the superconducting heavy ion
synchrotron Nuclotron in JINR - Dubna are given as
well.

1. PROCESSES  IN  CHARGE
EXCHANGE  INJECTION

   A comprehensive review of the processes taking place
during the heavy ion charge exchange injection could be
found in [1]. Here we will summarize only those results
which are of importance for the following description.
   As the beam travel through the stripping foil the
relative content of ions in different charge states changes
due to the processes of electron loss and electron capture.
For thick enough foils the charge state distribution
reaches an equilibrium - [2]. This equilibrium
distribution is independent on the charge state
distribution in the incident beam and is determined only
by the relations between different charge - exchange
cross sections and by the ion velocity.
   The equilibrium charge state distribution is well
described by a Gaussian - [3]:
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In (1) Φq denotes the relative content of ions in charge
state ‘q’ , q is the average charge state and σ is the
standard deviation of the charge state distribution.
   Several semiempirical formulae have been proposed for
the average charge state q , for example the Nikolaev -
Dmitriev’s  formula - [4]:
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In (2) and (3) v is the ion velocity and Zpr the projectile
atomic number.

   For the standard deviation of the distribution Nikolaev
and Dmitriev propose the following expression-[4]:
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   Two processes are of  big importance for the charge
exchange injection: Coulomb elastic scattering and
ionization losses of ion energy.
   The Coulomb elastic scattering causes a change in the
ion trajectory slope. In [5] the following experimental
formula for the heavy ion multiple scattering mean
square angle in solid foils is given:
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where the scattering angle θ is in mrad, the stripper
thickness t is in µg/cm2 and the projectile energy Epr is in
MeV.
   The distribution of the multiple scattering angle could
be approximated with good accuracy by a Gaussian.
   The losses of the ion energy in the striping foil is due
to the excitation and ionization of the foils atoms. Mean
losses are described by the well-known Bethe - Bloch
formula -[6].
 The ionization losses straggling is distributed according
to Landau’s, Vavilov’s or normal distributions depending
on the ion velocity. In practice the straggling is small
and could be neglected.

2. EQUATION  OF  BOLTZMANN

   The Flocquet normalized coordinates are the most
convenient for the description of  the kinetics of charge
exchange injection. In this paper we will use:
   i.) generalized azimuth φ as an independent  (‘time’)
variable:
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   ii.) normalized transverse displacement:
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In the above formulae x denotes the horizontal
coordinate, s - the longitudinal coordinate and α, β, γ are
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the Twiss functions. We will use “ ′ “ for the
differentiation with respect to φ.
   Let us consider the evolution of the particle density in a
thin slice of the beam.
   In the consecutive moments φ=0, 2π, 4π, ... the slice
will pass through the stripper and the particles in the
slice will undergo elastic Coulomb scattering. The elastic
scattering results in kicks in the slope of  the particle
trajectories.
   A bit earlier new portions of particles are injected into
the accelerator.
   As we will see, not all of the particles which have
passed the stripper will be accepted by the accelerator;
the ( ) ( , , )1 − ′< >Φ q f u u φ of them will be lost.

   Summarizing this three effects we can write the
following kinetic equation :
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where   hk(φ) is a unity pulse from 2πk to (2πk+∆φ), ∆φ
being the phase thickness of the  striping  foil  ( ∆φ <<
2π ).
   In equation (9) qsource denotes the power of the sources
of particles. If f0 (u, u′ ) is the distribution function in the
injected beam we could write for the
power of the sources:
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   In equation (9) qdrain  denotes the power of drains of
particles. In order to  obtain an expression for qdrain  we
will use the following assumption. Let a beam of ions in
equilibrium charge state <q> crosses the stripper ( <q> is
an integer closest to the parameter q in (1) ). As a result
of a chain of electron losses and captures behind the
stripper the beam will embrace a whole spectrum of
charge states. This spectrum of charge states is given by
the experimental formula (1). If the stripping foil has
equilibrium thickness the distribution of charge states
behind the foil will not depend on the charge state
distribution in the incident beam.
   We will consider that the machine is able to accelerate
only ions in equilibrium charge state <q> . Ions in charge
states different from the equilibrium will finally be lost
on the vacuum chamber walls and hence the circulating
beam will consists only of ions in <q> charge state.
Under this assumption  we can write for the  power of
the particle drains:
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   The Boltzmann equation (9) contains the random
quantities ∆θk  and is in essence a stochastic PDE. Our
first step will be to cope with this stochasticity. In order
to do this we will try to find an equation for the averaged
over the realizations of ∆θk particle density <f>. If we
neglect all the fast oscillating members and retain only
the main, slowly varying members we reach to the
following equation for <f>:
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   This PDE is already free of any stochasticity. From this
point further we will omit the ugly brackets, writing  f
instead  of <f>.
   We must solve the equation (12 ) under zero  initial
and boundary conditions.

3. SOLUTION  OF  THE  KINETIC
EQUATION

   We will consider that the particles in the injected beam
have normal distribution in the transverse phase plane
(u, pu ):
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where ∆N is the number of injected into the slice
particles.
   In our treatment we will work with accuracy
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. As we will see later this means that

we consider the emittance growth ∆ε in single stripper
crossing much smaller than the initial emittance ∆ε/ε <<
1.
   The charge exchange injection coves the following
processes: injection of new particles, diffusion along u′
coordinate in the stripper, ion losses and  betatron
oscillations between two successive crossings the
stripper.
   It can be shown that the solution of the kinetic equation
(12) consists of main stationary part which represents a
sum of Gaussians and a small ( of order β0<∆θ2>/2σ0

2 )
and depending on φ part with more complicated
structure.

For the stationary part of the solution we can
obtain:
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with:     

f u u
N

Q
ek

k

Q u u

Q k( , )′ =
−

+ ′
∆

2 2
2

2 2 2

2 2

π σ
σ          (15)        

σ σ β θk tk2
0
2 21

2
= + < >∆         (16)

For the variable with φ part of the solution we can obtain:
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We are interested mainly in the stationary ( averaged
over betatron oscillations)  distribution function.
   In equation (14) ‘n’ denotes the number of realized
injection turns, in (17) a= 1/2β<∆θ2>.
   Expressed in words the meaning of this formula is as
follows: a portion of ∆N particles with normal
distribution f0( u, pu ) ~ N(0, σ0) is injected in the
accelerator ; passing through the stripper the distribution
gets wider in u′ direction; the following betatron
oscillations spread this widening also on the coordinate u
; a part ( )1 − < >Φ q f  of  this particles goes to charge

states different from the equilibrium charge state <q>
after the striping foil and is cut later  by the accelerator,
so only Φ < >q f  of  the slice survives. This process

repeats ‘n’ times.

4. EMITTANCE GROWTH

   Integrating (14) over u and u′ from (-∞) to (+∞) and
over the azimuth from 0 to 2π we receive the number of
particles successfully injected in the accelerator:
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where Io is the injection current, T - the period of the
synchronous particle and the  ‘aperture’ factors ΦA,k  are
given by:
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A being the acceptance.
  The diffusion in the stripper due to the Coulomb
scattering and the jumps in the off-momentum orbit after
the foil crossings due to the ionization losses of energy
lead to transverse emittance growth.
   On  the base of (14) the following formula for the

emitance growth can be deduced:                                 
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    5. CHARGE EXCHANGE INJECTION

IN NUCLOTRON     

   We have applied the above derived formulae for the
charge exchange injection in the JINR - Dubna
superconducting heavy ion synchrotron Nuclotron - [7].
   A natural development of the JINR LHE spin physics
programme will be the acceleration of  polarized beams
of deuterons in Nuclotron. The scheme of acceleration
covers : a cryogenic source of polarized deuterons
Polaris, a 5 MeV/u linac, charge exchange D-↑  → D+↑
injection into Nuclotron and acceleration in it up to 6
GeV/u - [8].
   Fig. 1 shows the process of ion storage.
   An intensity gain of about 40 could be achieved for a
100 turn stripping injection.                                               
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Fig. 1. Ion storage during D- injection into Nuclotron.
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