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Abstract  
A design approach based on a stream function with a 
single angular Fourier component can be used to 
specify the end-turn configuration in magnet windings 
with discrete blocks of conductors.  The design 
approach is especially appropriate for large-bore, 
current-dominated magnets with many turns. The 
design method can be summarized as follows: First 
find a winding-block layout (block angles, number of 
turns in each block, etc.) for the central, straight-
conductor part of the windings that produces two-
dimensional fields with negligible higher harmonic 
content.  Next, specify the numbers of groups of 
conductors into which each block of the 2-D part of the 
winding fans out in the end-turn region.  Also specify 
the end-zone axial length and the shape-function 
profile for the end zones.  Finally, generate turn 
contours by finding conductor-group centerline curves 
in the developed (flattened) cylinder surface that are 
contours of constant stream function.  Individual turns 
are specified by constant parallel displacement from 
the group centerline curve in the developed winding 
surface.  An interactive computer program performs 
the above steps has been written and has been used to 
design end windings for a test quadrupole example.  
The unwanted higher harmonics in both peak and 
integral fields as computed by the Biot-Savart law are 
remarkably low. 

1 THE STREAM-FUNCTION CONCEPT 
A smooth curve on a surface (which may represent the 
position of a conductor centerline) can be described as 
the locus of points for which a continuous stream 
function ψ of two surface coordinates is constant.  If 
the surface is a cylinder, convenient coordinates are the 
axial coordinate z and the azimuthal angle φ.  A family 
of nested curves representing an N-turn surface 
winding (without turn-to-turn connections) is defined 
by a function ψ(φ,z) and a set of constants Cn , n=1, 2, 
3,... N.  In the limit of an infinite number of turns the 
current-carrying conductors form a field of flow; hence 
the terminology "stream function".  It can be shown 
that if the stream function for continuous surface 
windings is of the product form 
 
      ψ(φ,z)=sinmφf(z)               (1) 
 
 
 
 

and the boundaries are either open or are of infinite  
permeability and form a surface of rotation around the 
winding axis, the magnetic fields produced by the 
windings have pure sin mφ symmetry, even in three 
dimensions.   That is, the three components of 
magnetic field around the magnet axis are the three 
components of the gradient of a scalar magnetic 
potential of the form 
   
       V(r,φ,z)=sinmφHm(r,z)              (2) 
 
For dipoles, m=1; for quadrupoles, m=2, etc.  The 
function f(z) is called the shape function, since for a 
given winding-cylinder radius and m value, the family 
of winding contours is completely specified by it.  

It is usually convenient to choose a normalization 
factor for ψ such that f(z)=1 at the pole centers and 
f(z)=0 at the ends of the windings.  With this 
normalization, the stream function in the straight 
section of the windings between the end-turns regions 
is simply sin mφ.  In the end regions of the windings, 
f(z) varies smoothly between 0 and 1. The winding 
design approach described here is based on the idea 
that if discrete windings can be found that approximate 
the flow field of Eq.1, the magnetic field produced by 
them will have nearly pure sinmφ symmetry; i.e., have 
relatively low values of “allowed” Fourier components  
K=3m, 5m, … (2k+1)m, etc.  (The present work 
concerns only the so-called "allowed" field errors, and 
does not address "non-allowed" error harmonics due to 
random errors in conductor placement, etc.).   

Practical winding considerations place constraints 
on the detailed form of the shape function f(z).  The 
shape function f(z) must have zero first derivative at the 
z value where the turns leave the straight section of the 
windings and enter the end-turn region, in order to 
avoid sharp bends.  The maximum absolute value of 
the derivative of f(z) in the end-zone region must at a 
minimum be low enough to prevent overlap of adjacent 
finite-width conductors.  However, the end-zone region 
would typically be made longer in z than the minimum 
allowed by finite conductor-width considerations in 
order to reduce field peaking and to reduce unwanted 
Fourier components. 

Many functions could be used for the shape 
function f(z).  One convenient shape function f(z) for a 
winding of length L with end-winding zones of length 
w1 and w2 is as follows.  For the left-hand end zone 
with  -L/2 < z < -L/2+w1, take 
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f(z)=1+A1(z+L/2-w1) 

2 + B1 (z+L/2-w1)
4,             (3) 

 
where A1=(s1/2-2) / w1

2, B1=(1-s1/2) / w1
4 .  For the 2-D 

straight-conductor central part of the windings, with     
-L/2+w1 < z < L/2-w2, take f(z)=1.   This produces the 
usual cosmφ 2-D windings in this region. For the right-
hand end zone, with L/2-w2 < z< L/2, take 

f(z)=1+A2(z-L/2+w2)
2 + B2(z-L/2+w2)

4,                (4) 
 

where A2=(s2/2-2)/w2
2, B2=(1-s2/2)/w2

4.  Elsewhere, 
f(z)=0.   

The above function has the constraints f = 1 in the 
straight section, f’ = 0 at the ends of the straight section, 
and f = 0 at the winding ends built in.  In the present 
example, the end zones are taken to be equal in length 
with the same winding contours.  Consequently 
w1=w2=w and s1=s2=s; the shape function therefore has 
three free parameters: total winding length L, end-zone 
length w, and end-slope parameter s.  Fig. 1 is a plot of 
the shape function.  

 
Fig. 1.  Plot of the shape function of Eqs. 3-4 for the 

present example with L=3.25 m, w1=w2=0.3 m, and 
s1=s2=0.5.   
 

2 TWO-D WINDING DESIGN 

The purpose of this design stage is to find a winding 
layout for the straight-winding section (2-D part of the 
windings) that has negligible higher harmonics. Turns 
are separated by the fixed turn-to-turn gap width 
within a block; the angular spacing between blocks is 
adjustable.  The angular position of the first block is 
fixed.  Block angles are adjusted to null out a specified 
number of higher harmonics.  The problem is nonlinear 
because the harmonics are nonlinear functions 
(trigonometric) of angular positions of the blocks.   In 
principle, the 2-D optimization could be done with a 
nonlinear optimizer from a standard mathematical 
analysis software package.  In the present numerical 
work, a "homemade" Fortran routine is used.  The 
approach taken to reduce the number of free 
parameters, which still allowing all five free blocks to 
move, was to represent the block shifts by a Fourier 
series in initial block angle.  With this routine, and 
with the proper choice of the numbers of turns in each 
block, it was possible to null out the harmonics m=6, 
m=10, and m=14.  Parameters for the 2-D layout are 
summarized in Table I.  
 

 
 

Table I: Parameters for the 2-D Part of the 
Winding 

 
Parameter Value 
Conductor width (as 
radially projected on the 
winding cylinder) 

1.17 mm 

Spacing between 
conductors 

0.085 mm 

Winding radius 188 mm 
Total turns/pole 69 
No. of winding 
blocks 

6 

No. of turns in 
blocks 1, 2, 3, 4, 5,  
and 6, respectively 

20, 19,13 ,7 ,6 
, and 4 

Optimized block 
center angles for 
blocks 1, 2, 3, 4, 5, 
and 6, respectively 

3.81,12.2, 20.57, 
26.75, 32.22, and 
38.65 deg. 

 
 

3 END-TURN DESIGN 

An additional set of variable parameters is introduced 
in the end-turn design stage.  They are the numbers of 
groups into which each block of the 2-D winding fans 
out in the end windings and the numbers of turns in 
each group of each block.  If a block has a relatively 
small number of turns (as is typical for the blocks near 
the pole center), the number of groups in the block can 
be 1; this means that the conductors in the block stay 
together in the end-winding zone. 

In general, finer division of the blocks into many 
groups means lower higher harmonics.  In a practical 
design, finer division must be traded off against costs 
of special spacing pieces between turns, bending radii, 
etc.  The present test example turned out to have finer 
end-turn division than is needed to meet most field-
quality specifications and should be iterated for fewer 
divisions with input from magnet designers.  For 
example, Block 3 could have only one group, etc.  The 
end-turn group numbers are summarized in Table II 
below. 

 
Table II:  End-Winding Block Fanout Specification 

 
Block 
No.   

No. of 
turns 
in 
block 

No. of 
groups 
in 
block 
fanout 

No. of 
turns 
in 
Group 
1  

No. of 
turns 
in 
Group 
2  

No. of 
turns 
in 
Group 
3 

1 20 3 3 5 12 
2 19 2 9 10 - 
3 13 2 6 7 - 
4 7 1 7 - - 
5 6 1 6 - - 
6 4 1 4 - - 

Proceedings of EPAC 2002, Paris, France

2449



    
Fig. 4 is the winding layout produced by the present 
approach. Group centerline curves were determined by 
first setting cg = sin 2φg, where φg is the center angle of 
the group in the 2-D part of the winding.  Then the 
group centerline contour in the end windings is just the 
curve determined by sin 2φ f(z) = cg, with f(z) given by 
Eqs. 3-4, and with L = 3.25, w = 0.3, and s = 0.5.  
Individual turn contours for each group were then 
generated by laying off constant distances (i.e., 
appropriate multiples of the conductor width and turn-
to-turn gaps) from the group centerline curve along the 
normal to the group centerline curve in the developed 
surface of the cylinder. 

 
Fig. 4. End-turn layout on the developed winding 
cylinder with the shape function of Fig. 1, the 2-D 
design of Table I, and the block group definition 
of Table II, showing individual turns. 

4 CALCULATION OF 3-D FIELD 
HARMONICS 

 
Magnetic fields were computed by use of a Biot-Savart 
law algorithm in which individual turns were modeled 
by a collection of short (typically 2-mm) line segments 
in the ends.  Single straight segments connecting the 
end turns were used to model the straight sections.  
With this model, effects of iron yokes are ignored, but 
it is easily shown that in the absence of nonlinear 
effects such as saturation effects, departures of the iron 
geometry from axisymmetry, etc., the ratios of higher 
harmonics to the fundamental m=2 harmonic are 
actually overestimated by the Biot-Savart field 
calculation if an iron yoke is present.  This is a 
consequence of the fact that iron boosts the 
fundamental (m=2) harmonic component of the field in 
the bore more than it does higher harmonics. 

 
  
Fig. 5.  Plot of the m=6 (solid curve)  and 
m=10 (dashed curve) Fourier components of 
Br in the end region of magnet.  The straight 
part of the windings ends at z = 1.325 and the 
end of the windings is at z = 1.625. 
 

Fig. 5 is a plots of the m=6 and m=10 Fourier 
components of the radial component of the field at the 
reference radius of 11.43 cm as a function of z for the 
end windings of Fig. 4.  Curves for the azimuthal 
component are similar, as expected.  Harmonic 
strengths should be compared to the fundamental m=2 
value of 2.2 T at the reference radius in the center of 
the magnet.  Higher harmonics are essentially zero in 
the 2–D part of the magnet.  This serves as a check on 
the 2-D design, since it was based on Fourier analysis 
of the current distribution, not computed fields.  

Values for the harmonics m=6 and m=10 
integrated in z over a single end zone, divided by the 
fundamental m=2 field component integrated over the 
whole magnet, are 4.2 × 10-5 and 9.3 × 10-6, 
respectively.   

 
5 DISCUSSION 

 
Probably, the most serious limitation of the field model 
of this paper is that a winding layer is treated as a 
current sheet of zero radial thickness with a radius 
equal to the mean radius of the finite-thickness layer.  
For magnets of the size of the AHF quadrupoles, this 
should not cause large errors.  Also, for magnets with 
warm iron yokes, saturation effects should be small and 
should not significantly affect the results.  
Nevertheless, the results should be checked with a 
more realistic model with conductor turns with the 
actual radial depth.   
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