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Abstract

Since 1994 thee± − p collider HERA has been pro-
viding longitudinally polarised electron (positron) beams
at 27.5 GeV to the HERMES experiment. The beams
become self–polarised by the Sokolov-Ternov effect and
the polarisation is made longitudinal with spin–rotators.
There is now strong interest in the study of collisions of
e± with high energy polarised protons but there is no
convincing self-polarising mechanism for protons at high
energy. Therefore protons must be polarised almost at
rest in a source and then accelerated to the working en-
ergy. At HERA, if no special measures are adopted, this
means that the spins must cross several thousand spin-
orbit resonances, each of which could depolarise the beam.
While Siberian Snakes enable all first order resonances
to be avoided, higher order resonances can still be de-
structive. We have searched for orbital tunes that reduce
the number of dangerous higher-order resonances and we
have searched for a suitable choice of Siberian Snakes.
Long term spin-orbit tracking simulations demonstrate that
a beam would lose at least about 15% of its polarisation
during the acceleration cycle of HERA up to 803 GeV. Ac-
celeration to 920 GeV, the current energy of HERA, would
require a significant reduction of the vertical emittance.

1 INTRODUCTION

Following the successful attainment of longitudinal elec-
tron and positron spin polarisation at around 27.5 GeV in
HERA [1], thee± − p collider at DESY, extensive numer-
ical and theoretical studies have been made of the feasibil-
ity of obtaining high spin polarisation in the proton beam
at energies above 800 GeV [2, 3, 4, 5, 6, 7, 8]. In the mean-
time, polarised proton beams have recently been attained at
RHIC [9] at 100 GeV but as our calculations have shown,
and as we explain below, at the much higher energies of
HERA maintaining the polarisation would be much more
difficult than at 100 GeV. At very high energy the chief
features of spin motion are best understood in terms of ad-
vanced concepts such as those of the invariant spin field
and the amplitude dependent spin tune. This, in turn, re-
quires ways to calculate these quantities numerically and,
if possible, analytically.

This paper reviews these concepts and very briefly sum-
marises the studies for HERA carried out so far. More de-
tailed information is available in [2, 3, 4, 5, 6, 7] and refer-
ences therein.
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2 INVARIANT SPIN FIELD AND
AMPLITUDE DEPENDENT SPIN TUNE

Particle dynamics in storage rings is described in
terms of three pairs of canonical coordinates�u =
(q1, p1, q2, p2, q3, p3) which could, for example, be
(x, px, y, py, ∆t, ∆E) wherex, px, y, py describe trans-
verse motion with respect to the curved periodic orbit and
∆t, ∆E are the time delay relative to a synchronous par-
ticle and the deviation from the “design” energy. The in-
dependent variable is the distance along the rings (“the
azimuth”). Spin motion for protons moving in electric
and magnetic fields is described by the T–BMT equation
[10, 11] d�S/ds = �Ω × �S where�S is the rest frame spin
expectation value of the particle (“the spin”) and�Ω depends
on the electric and magnetic fields, the velocity and the en-
ergy so that it depends on�u ands. If the beam is stable
the phase space densityρ(�u; s) of a particle bunch is the
same from turn to turn, i.e.ρ(�u; s + C) = ρ(�u; s) whereC
is the circumference. If the spin distribution is also stable,
the valueP (�u; s) and the direction̂n(�u; s) of the polarisa-
tion at each point in phase space are also 1–turn periodic:
P (�u; s + C) = P (�u; s) andn̂(�u; s + C) = n̂(�u; s). Thus
ρ andP are 1-turn periodicscalar fields andn̂ is a 1–turn
periodic vector field. Moreover, although the“invariant
spin field” n̂ viewed as a whole is 1–turn periodic,n̂(�u; s)
obeys the T–BMT equation along particle orbits so that
n̂( �M(�u; s); s + C) = n̂( �M(�u; s); s) = R3×3(�u; s)n̂(�u; s)
where �M(�u; s) is the new phase space vector after one turn
starting at�u andR3×3(�u; s) is the corresponding spin trans-
fer matrix. On the closed orbit̂n(�u; s) becomeŝn(�0; s)
which we denote bŷn0(s). This is the 1–turn periodic so-
lution of the T-BMT equation on the closed orbit.

The attainment of high polarisation at an azimuths re-
quires bothP (�u; s) and Plim = |〈n̂(�u; s)〉| to be high
where〈〉 denotes the average over phase space. The T–
BMT equation shows that for motion in transverse fields,
a deflection of the orbit by an angle∆θorb in (say) the ra-
dial field of a quadrupole is accompanied by a rotation of
the spin by an angle(Gγ + 1)∆θorb whereG ≈ 1.7928
is the gyromagnetic anomaly of the proton. At 800 GeV
(Gγ + 1) ≈ 1530. Then at very high energy in HERA
vertical betatron motion in the quadrupoles can cause the
spread of̂n over phase space to be many tens of degrees
so that methods of calculatinĝn and minimising the spread
are essential. The calculation ofn̂(�u; s) is far from triv-
ial beyond a first order approximation [12, 4, 5, 6, 13] and
since the first order approximation is inadequate at high
energynon–perturbative means such as stroboscopic aver-
aging [13], the SODOM algorithm [14] or adiabatic anti-
damping [4] must be used. All three methods are incorpo-
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rated in the computer code SPRINT [5, 6].
Another key quantity, which is also calculated in

SPRINT, is the spin tune. This is the number of spin pre-
cessions around̂n for one turn around the ring. This“am-
plitude dependent spin tune” ν( �J) can only depend of the
amplitudes�J of the synchrobetatron motion and not on the
phases of the particle motion. On orbital resonanceν( �J)
may not exist. Spins are particularly strongly perturbed
when the spin motion is coherent with the orbital motion,
i.e. when the spin precession rate is near resonance with the
orbital tunes:ν( �J) = k0 + k1Q1 + k2Q2 + k3Q3 where
the Q’s are the tunes of the orbital modes and thek’s are
integers. Resonances with|k1|+ |k2|+ |k3| = 1 are called
first order resonances. Note that resonances are primarily
due to the non–commutative nature of spin rotations so that
they occur even with perfectly linear orbital motion. Close
to spin–orbit resonancePlim can be especially small and
methods are therefore needed to avoid resonance or to keep
Plim large in other ways. On the closed orbitν( �J) reduces
to ν(�0) which we write asν0. In a ring with misalignments
n̂0 is strongly tilted away from its nominal direction at in-
teger resonancesν0 = k0.

More background material and complete details on these
concepts can be found in [2, 4, 5, 6, 7, 13].

3 SIBERIAN SNAKES

The first step in setting up a ring for polarisation is to en-
sure that̂n0 is vertical in the arcs so that spins are less sen-
sitive to vertical fields in quadrupoles experienced during
motion on horizontal betatron and dispersion trajectories,
thereby suppressing horizontal betatron and synchrotron
resonances. But spin motion on vertical betatron orbits
must still be dealt with to suppress first order vertical beta-
tron resonances and higher order resonances. In a perfectly
aligned ring with no solenoids or vertical bends,ν0 = Gγ
and it increases by one unit for every 523 MeV. Thus during
acceleration several thousand spin–orbit resonances must
be crossed and polarisation can be lost at many of these.
The solution is to install pairs of Siberian Snakes. These
are magnet systems designed to rotate spins through an an-
gleπ around an axis (the snake axis) in the machine plane
independently of the position in phase space and the beam
energy. With a suitable choice of the number of snakes,
their positions and their axes,ν0 can be fixed at1/2 inde-
pendently of energy in a perfectly aligned ring. Then with
a proper choice of orbital tunes, first order spin–orbit reso-
nances can be avoided and the reduction ofP lim and polar-
isation loss during acceleration can be reduced. The local
effect of orbital motion on spin (throughΩ(�u; s)) increases
with the orbital amplitudes. Then, in general, global quan-
tities like the spread of�n increase with the orbital am-
plitudes. That this is not always the case can be seen in
[5, 6, 7].

In HERA, where the proton ring has interleaved verti-
cal and horizontal bends on each side of three straight sec-
tions, extra “flattening snakes” [15, 8, 6] are needed solely

to ameliorate the effects of the vertical bends and ensure
thatn̂0 is vertical in the arcs.

4 FILTERING AND SNAKE MATCHING

Contrary to popular belief it is not the case that the po-
larisation is always improved by increasing the number of
pairs of snakes. In a ring such as HERA with only approx-
imate 4–fold symmetry, snake layouts and orbital tunes
must be chosen carefully. The first step at HERA is to em-
ploy a “filtering” algorithm [4] in whichn̂ is calculated in
linear approximation for snake layouts with 4 or 8 snakes.
In each case a large number of snake angle combinations
which giveν0 = 1/2 and vertical̂n0 is chosen and the lay-
out is selected which maximisesPlim, averaged over a set
of fixed energies in some energy range, and for purely ver-
tical betatron motion with a realistic amplitude. By this
means one can find layouts which are much superior to
naive “obvious” choices [5, 6] and one easily discovers
schemes with 8 snakes which perform worse than schemes
with 4 snakes. Since an increase ofPlim implies a reduc-
tion of overall spin–orbit coupling it is hoped that with a
sufficiently largePlim depolarisation during acceleration is
reduced too. A chosen layout is then studied in more detail
with all three modes of orbital motion.

The primary disturbance to spins comes from vertical be-
tatron motion and at first order the disturbance can be writ-
ten in terms of 4 one turn integrals involving the phase of
spin precession and the betatron motion [5]. While filter-
ing is an automated but rather unsystematic way of search-
ing for good snake schemes, one can try to systematically
choose betatron and spin phase advances between sections
of the ring to reduce the size of the 4 integrals. This pro-
cedure is called “snake matching” [5]. It can be shown
that for a 4–fold symmetric ring with 4 main snakes, snake
matching can be achieved for all energies even if the geo-
metrical and optical symmetry has been somewhat broken
[5]. With 8 main snakes, snake matching can be achieved
even without changing the betatron phase advance between
different sections of the ring. Calculations ofP lim have
shown that snake matching with 4 snakes allows a 16–fold
increase in the useable vertical emittance compared to that
with an uneducated choice of snake angles.

5 SELECTION OF ORBITAL TUNES

While the use of snakes together with a proper choice
of orbital tunes allows first order resonances to be avoided,
the orbital tunes should be chosen so that dangerous higher
order spin–orbit resonances are avoided too. This is where
a correct understanding and definition of spin tune becomes
important since the spin tune depends on the orbital ampli-
tudes. So before orbital tunes are chosen a survey of the
variation of spin tune over the phase space should be made
[6, 7].
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6 RESULTS OF SIMULATIONS

Figure 1 shows the results of a simulation of acceleration
from 40 GeV to 820 GeV for a perfectly aligned HERA
with an optimised choice of 4 main snakes (figure 2) ob-
tained by filtering and for typical energy dependent HERA
optics with optimal orbital tunes. Since, owing to lack of
space, it would be difficult to install 8 snakes in HERA, re-
sults for that case are not reported here. The protons move
at fixed amplitudes of2σ in all three planes. The invari-
ant emittances are4π mm.mrad for transverse motion and
1.8 10−2π m.rad longitudinally. The polarisation shows
a step–like fall at a strong residual resonance structure at
about 803 GeV. An estimate for the achievable polarisa-
tion based on averaging over all amplitudes shows that up
to 803 GeV, between 62 and 85% of the injected polarisa-
tion could be maintained. More polarisation could be main-
tained by a significant decrease in the vertical emittance.
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Figure 1: The polarisation during acceleration to 803 GeV
for 2σ in all 3 phase space amplitudes for the snake layout
of figure 2. From [6].
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Figure 2: The 4 snake layout used for figure 1.

7 FURTHER WORK

The study described here deals with a perfectly aligned
ring. Thus further studies are needed: (i) the effect of

closed orbit distortions to determine the tolerable limits on
such distortions and to develop orbit correction schemes.
Simulation with distortions shows, so far, that maintain-
ing polarisation during acceleration would be difficult be-
yond about 300 GeV [16]. (ii) further tracking simulations
with “snake matched” schemes [5], (iii) the effect of beam–
beam forces, other nonlinear effects and various sources of
noise should be studied, (iv) studies of proton spin motion
in DESY III and in PETRA, including a proposed electron
cooler section [17], (v) feasibility study for high field (6
Tesla to save space) snakes and rotators, (iv) design study
for practical rotator layouts [18].

Obtaining highly polarised proton beams at high energy
in HERA would be a difficult undertaking but the success
at RHIC gives grounds for optimism.
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