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Abstract 
A Labview program for a Rotating Coil Mapper (RCM) 
has been adopted by SNS/ORNL to measure the SNS 
magnets.  Detailed study has found that the data analysis 
code in the program underestimates the calculation of 
magnetic harmonic contents due to the finite number of 
points sampled per revolution.  The resulting digitizing 
errors could be as large as 0.26% for integrated 
quadrupole fields, 2.4% for integrated dodecapole terms, 
6.9% for integrated 20th-pole terms, etc.  This is not 
acceptable for many applications.  With a new data 
analysis method, this error can be eliminated and the 
measurement accuracy can be improved.   This paper 
describes an analytical solution of this problem, with an 
experimental demonstration of its effect. 
  

1 INTRODUCTION 
The Spallation Neutron Source (SNS) requires hundreds 
of magnets for its linac, accumulation ring, and transfer 
lines.  We have newly established a magnet measurement 
lab at ORNL to handle two thirds of these magnets.  A 
Labview [1] program for a Rotating Coil Mapper (RCM) 
has been adopted for our measurements.  The mapper 
mainly consists of a radial coil, a digital integrator, and a 
computer, controlled by a Labview program for data 
acquisition and analyses.  The radial coil rotates in 
magnetic fields and senses their azimuthal components 
Bθ.  The electrical signal induced on the coil is fed into a 
digital integrator PDI-5025 [2], which yields the 
information about the magnetic flux through the coil at 
different azimuthal angles θ.  In the program the number 
of data points (P) per revolution for digital integration is 
set to P=50, 100, or 200.  The data is further analyzed by 
the Labview program to produce harmonic contents of the 
measured magnetic fields. 
     In a rotating coil mapper the measurement accuracy 
depends on many parameters.  One of them is a digital 
error due to the finite number of points sampled per coil 
revolution.  Detailed study of the Labview program has 
found that the data analysis code in the program 
underestimates the calculation of magnetic harmonic 
contents.  The errors thus produced become excessive and 
not acceptable for many applications when the sampling 
points are small.  For instance, when P=50 the resulting 
digitizing errors is about 0.26% for integrated quadrupole 
fields, 2.4% for integrated dodecapole terms, 6.9% for 
integrated 20th-pole terms, etc.  Though these errors can 
be reduced to a tolerable level by using a large number of 
P, we have found that there is a better way to eliminate 
the digitizing errors completely.   
    ______________________________________  

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy.   

 
     In this paper, we will first briefly review the principle 
of a RCM operation and mathematic formulas in the code 
to calculate the harmonics.  Then, the errors are analyzed 
and improved formulas to eliminate the digitizing errors 
are introduced.  Finally, we show some experimental 
results to confirm our analysis. 
 

2 PRINCIPLE OF OPERATION 
In a cylindrical coordinate system with the z-axis along 
the length of a magnet and the origin located at the center 
of the magnet aperture, the azimuthal component of a two 
dimensional field in a current free region can be written 
as: 
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where Cn and αn are the amplitude and phase angle of the 
2n-pole component of the total field and R0 is an arbitrary 
reference radius, typically chosen to be 50-80% of the 
magnet aperture [3].   In a radial coil with its two-side 
wires parallel to the z-axis and having the radii R1 and R2, 
the magnetic flux through the coil at any angular 
orientation θ can be obtained by  
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where N is the number of turns of coil winding, L is the 
length of the coil along the magnet axis, and An is the 
total amplitude of each harmonic, given by 
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here we introduce a so-called coil unbucked geometry 
factor UBn: 
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     When the radial coil rotates in the magnetic field a 
voltage signal is generated, which is  
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with θ=ωt.  This signal is fed into a digital integrator, 
which performs a seamless, definite integration of P 
intervals per revolution, where P is set to 50, 100, or 200 
in the program.  The integrated signal for each interval 
can be expressed by 
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where i=0 to P-1.  The assembly of these P individual Φi‘s 
constitutes a digitized magnetic flux signal, which is a 
superposition of infinite harmonics Φni’s.  The largest 
value for each harmonic Φni’s takes place around n(θ-
αn)=π/2 and is given by 
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This could be treated as the amplitude of the output 
harmonic signal Φni’s from the integrator.  When P is very 
large, i.e. P>>n2π, Eq. (7) can be approximated as  

( )PnAA nn /’ π2≈    .   (8) 

The signal Φi’s obtained in experiments is Fourier-
analyzed in the Labview program, that yields the 
amplitude Fn of each harmonic in the frequency domain.   
The relationship between Fn and An can be found as 
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     The analysis program is to find Cn from Fn, which is 
the frequency domain representation of the coil signal 
processed by the digital integrator.  Thus, for n=1, the 
integrated dipole field B*L is 
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For n=2, the integrated quadrupole gradient G*L is 
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And, for n>2, the higher harmonic contents are usually 
expressed by the ratio of Cn/C1 or Cn/C2, depending on a 
dipole or quadrupole magnet in consideration: 
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Equations (10) to (12) form the basis in the original 
analysis program.    
     It is common practice to use a bucking coil, such as the 
one called the Halbach type coil [4],  for measuring the 
higher harmonic contents in order to improve the 
measurement accuracy.   The bucked signal is processed 
and analyzed in the same way as for the unbucked signal 
shown above, except that the unbucked coefficients UBn 
are replaced by the bucked coefficients Bn. 
 

3 ERROR ANNALYSIS AND 
IMPROVEMENT 

There are two approximations in obtaining Eqs. (10) to 
(12).  First, it is easy to see that we approximate 
Sin(n2π/P) as n2π/P in Eqs. (8) and (9b) under the 
condition P>>n2π.  This underestimates Cn since 
Sin(n2π/P)<n2π/P.  The error from this approximation 
gets large when the number of points P per revolution is 

small or the harmonic number n is large.  Second, it may 
not be so obvious that both Eqs. (7) and (9a) are also 
approximations.   In fact, Eq. (7) is exact only in the limit 
of an infinitely large P, which yields an infinitely small 
An’.  For a finite P in practice, the true maximum of the 
piece-wise integrated harmonic signal Φni’s could be 
assigned by the interpolation around n(θ-αn)=π/2, i.e. 
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which yields 

( )PnSinAA nn /’ π2=    .           (13b) 

Thus, we have  

( )PnSinPAPAF nnn //’ π⋅== 2   .            (14) 

This is the correct relationship between the Fourier 
amplitude Fn in experiments and the harmonic amplitude 
An in Eq. (3).  The errors caused by using n2π/P in Eqs. 
(10) to (12), instead of 2Sin(nπ/P), are, therefore, 

( ) ( )PnSinPnerror /// ππ−=1    .          (15) 

Table 1 lists the errors for different harmonic number n 
and points P per revolution.  It shows that for P=50 the 
original analysis program underestimates the measured 
quadrupole term (n=2) by 0.26%, the dodecapole term 
(n=6) by 2.4%, the 20th pole term (n=10) by 6.9%, etc.   

Table 1: Errors in Calculating Harmonics  
from Eqs. (10) to (12) 

Errors (%) P=50 P=100 P=200 
n=1 -0.066 -0.016 -0.0041 
n=2 -0.26 -0.066 -0.016 
n=3 -0.59 -0.15 -0.037 
n=4 -1.1 -0.26 -0.066 
n=5 -1.7 -0.41 -0.10 
n=6 -2.4 -0.59 -0.15 
n=7 -3.3 -0.81 -0.20 
n=8 -4.3 -1.1 -0.26 
n=9 -5.5 -1.3 -0.33 
n=10 -6.9 -1.7 -0.41 

     These digital errors can be eliminated by using Eq. 
(14) instead of Eq. (9b).  The results are 
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As mentioned before, in Eq. (18) UBn should be replaced 
by Bn to process the bucked signal for higher harmonic 
contents. 
 

4 EXPERIMENTAL VERIFICATION 
Our analysis above has been compared with the 
measurements of two SNS quadrupoles: one is for the 
linac and another for the transfer line.  Table 2 lists only  
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the results for n=2, 6, and 10 from the transfer line 
quadrupole 12Q45.  The magnet current is 272.17 A, and 
the reference radius R0 is 4.2 cm.  For two versions of the 
processing codes the experiment is repeated three times 
for each P number.  The entries in Table 2 are the 
averages of three mappings. 

Table 2.  Experimental Results 
 P=50 P=100 P=200 

Improved 
Formulas 

1.76727 1.76723 1.76722 

Approximate 
Formula 

1.76253 1.76597 1.76692 

Error 
(Experiment) 

-0.27% -0.072% -0.017% 

G*L 
(T) 

Error (Theory) -0.26% -0.066% -0.016% 
Improved 
Formulas 

1.85E-3 1.85E-3 1.85E-3 

Approximate 
Formula 

1.81E-3 1.84E-3 1.85E-3 

Error 
(Experiment) 

-2.4% -0.56% -0.13% 
C6/C2 

Error (Theory) -2.4% -0.59% -0.15% 
Improved 
Formulas 

2.86E-5 2.86E-5 2.87E-5 

Approximate 
Formula 

2.68E-5 2.81E-5 2.85E-5 

Error 
(Experiment) 

-6.8% -2.0% -0.74% 
C10/C2 

Error (Theory) -6.9% -1.7% -0.41% 

     It is easy to see that with the improved formulas (16) 
to (18) the integrated gradient G*L, the dodecapole term 
(n=6) and the 20th pole term (n=10) remain essentially 
unchanged for different data points P per revolution 
within the accuracy limit of our system.  With the 
approximate formulas, G*L and other harmonic terms are 
underestimated, especially for small P.   Note that for the 
entries C6/C2 and C10/C2, both C2 and C6 (C10) come from 
the same formulas.  This should be taken into account 
when the experimental errors are calculated.  The 
theoretical errors from Table 1 are also listed for 
comparison.  The agreement in general is very good.  
Some minor discrepancies still remain, largely due to 
signal fluctuations from mapping to mapping or numerical 
errors rather than essential physical mechanism.  In fact, 
we would produce exactly the same errors in experiment 
as predicted in theory if we process off-line the same raw 
experimental data with two different formulas.  The data 
in Table 2 are plotted in Figs. 1 – 3. 
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 Fig. 1. Integrated gradient vs. sampling points from two 
formulas. 
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Fig. 2  Integrated dodecapole vs. sampling points from 

two formulas. 

2.5E-05

2.6E-05

2.7E-05

2.8E-05

2.9E-05

3.0E-05

0 50 100 150 200 250

Number of Points per Revolution

C
10

/C
2

Improved Formula

Approximate Formula

 
Fig. 3  Integrated 20th pole vs. sampling points from two 
formulas. 
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