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Abstract

The 1.5 GeV electron storage ring Delta uses quadrupole
magnets with integrated sextupoles and steerers to obtain a
compact lattice. However, saturation and hysteresis effects
result in nonlinear interactions between the magnet com-
ponents. Therefore, optic models have so far failed to re-
produce the observed optics with the required precision.
We thus used beam based methods to obtain a heuristic
machine model. Beam based calibration has been used to
measure offsets between the signal centers of the beam po-
sition monitors and the magnetic centers of their close-by
quadrupoles. Measured response matrices are used as basis
for orbit feedback and local orbit bumps. These steps have
significantly improved machine stability and reliability.

1 SURVEY

1.1 Beam Position Monitors at DELTA

The electron storage ring DELTA uses capacitive beam
position monitors (BPMs) with four pick-up electrodes to
monitor the beam position in both transverse planes across
the ring. There is a total of 43 BPMs, 40 of which are
mounted close to an adjacent quadrupole yoke. 50% of
those BPMs have bulged tapers to fit tightly between the
hyperbolic pole shoes of their adjacent quadrupole, thus
retaining a relative position to the mechanical center of
the magnet within ±70µm. The remaining BPMs are al-
lowed for relative movement of up to ±1 mm (“floating
BPMs”) [1].
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Figure 1: Transverse section through a capacitive pick-up
BPM at DELTA.

Induced electromagnetic signals at the buttons of each
BPM are dispensed by a multiplexer into a single 500 MHz
amplifier of a high quality factor. The single amplitudes

are then evaluated by means of subtraction and normal-
ization to obtain a signal proportional to the beam offset.
A 10 Hz low-pass filter reduces sampling noise while re-
taining a reasonable bandwidth for slow orbit feedback. A
12-bit ADC allows to resolve a relative orbit difference of
about 5µm. For a more detailed description see [2].

1.2 Diagnosis

A four quadrant power supply may be hooked up to each
of the 76 DELTA quadrupoles for diagnostic purpose. This
is accomplished by the use of two cascades consisting of
successive layers of relais, each cascade responding to 6
digital input-lines [1]. This setup allows to vary the excita-
tion current for each quadrupole within ±3 A.

2 BEAM BASED CALIBRATION

2.1 Theory

Assuming a linear machine, it is possible to calibrate
a BPM with respect to the magnetic center of a nearby
quadrupole, by plotting the response of the closed orbit
caused by variation in strength of its adjacent quadrupole
versus the measured orbit offset within this BPM. With
the closed orbit passing off-center through a quadrupole by
an offset u, a variation of the quadrupole strength by ∆k
causes an orbit kick of

θ = ∆kleff

[
1 +

(k + ∆k)leffβ0 sin Ψ
2 cosΨ − ∆kleffβ0 sinΨ − 2

]
u.

Here, β0 is the amplitude of the local beta function and
Ψ = 2πQ represents the total phase advance along the en-
tire ring for the plane under consideration. This kick will
result in an orbit distortion at the location of BPM i of

∆ui = θ
√
β0βi

cos(πQ− |ψ0 − ψi|)
2 sinπQ

, (1)

with ψ0 −ψi being the phase advance between quadrupole
and BPM. Note that the response is linear in θ, which in
turn is linear in u so that

∑
i

∆u2
i ∼ θ2 ∼ u2.

By taking a series of measurements using a constant ∆k,
it is thus possible to determine the orbit offset ū, which
minimizes the effect upon the closed orbit by variation of
the close-by quadrupole. One simply evaluates the location
of the minimimum of the measured parabola. Fig. 2 shows
a typical example for such a series of measurements.
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Figure 2: Typical series resulting in a vertical offset for
BPM 15 of about ū = −50µm.

Due to an improved software interface for the correc-
tor magnets, the use of a fast hook-up supply for diagnos-
tic purpose and optimized software, the overall time con-
sumption for a calibration of all 40 calibratable monitors
has been reduced from a former 4 hours [1] to about 1 hour
in total. With a well adjusted machine, beam loss during a
complete series of measurements is negligable.

2.2 Accuracy

The statistical error of ū may be reduced to any extent
by the number of measurements taken. The major issue
leading to a reduced accuracy is an unknown angle of in-
cidence of the electron beam. Since the longitudinal posi-
tion of the BPM and its adjacent quadrupole differ by half
the length of the quadrupole yoke –i.e. 0.1 m for DELTA–
this incidence generates an additional orbit offset between
the two of them. Typical closed orbit angles value about
±0.5 mrad. However, by using a local orbit bump or a sin-
gle orbit corrector to sweep across the desired offset span,
an additional slope of up to ±2 mrad may result due to a
linear dependency between the orbit offset and its slope.
We label the real BPM offset ū0, and the slope induced
offset by (κ + γu). Employing the variances given above,
κ ≈ ±50µm and γ ≈ ±0.1. Hence, the measured parabola
as a function of the orbit offset u at the BPM transforms
from α[u− ū0]2 for a BPM centered within its quadrupole

to α(1 − γ)2
[
u− ū0+κ

1−γ

]2

≡ α′[u− ū]. To finally express

a worst case estimate for the accuracy of measurement δū,
we solve ∣∣ū0 − ū

∣∣
ū0=δū

= δū

for δū and obtain δū = |κ/(1−2|γ|)| ≈ 65µm for DELTA.

2.3 Results

Successive measurements have been taken over the last
20 months and allow to compare their results. After each
measurement, monitor calibrations have been adjusted by

the computed offsets, so that an immediate follow-up mea-
surement should in principle yield zero offset for the cor-
rected monitors. Fig. 3 shows the results of three series of
measurements, two of which have been performed as an
immediate follow-up.
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Figure 3: Calibration offset of three series of measure-
ments.

First thing to notice are the rather big offsets measured
for the first series taken in 12/00. The second series –taken
a year later in 12/01– already shows significant smaller off-
sets, whereas the third measurement basically verifies an
asymptotic improvement of monitor offsets. Indeed, this
is what is to be expected, since an iterative refinement of
monitor calibrations and orbit correction (see next section)
should yield an optimized closed orbit, where nonlineari-
ties and static orbit slopes (i.e. κ in the discussion above)
will be minimized. Yet, this last measurement exhibits cor-
rections beyond the measurement error of typically well
below 100µm, especially in the horizontal plane between
BPM 20 and BPM 30. This is accorded to a local im-
provement of the horizontal orbit within this range, since
a former abided DC injection bump has been taken back.
When comparing offsets for floating and fixed BPMs, no
significant difference becomes obvious. This suggests, that
the floating BPMs may already be forced tight into the
quadrupole aperture by chamber tensions. Hence they vir-
tually lose their ability of free movement and behave like
their fixed counterparts.

Proceedings of EPAC 2002, Paris, France

1224



3 BEAM RESPONSE MATRIX

The quality of closed orbit feedback and local orbit
bumps highly depend on the accuracy of the underlying
machine model. In particular, the beam response matrix,
i.e. the closed orbit changes in response of beam steer-
ing, must be as precise as possible. As Fig. 4 exemplifies,
the response as calculated by the MAD (Methodical Accel-
erator Design) software [3] does not match measurements
well enough. Thus, we decided to perform orbit correction
based on measured beam responses only.
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Figure 4: Beam response of a vertical steering magnet in
comparison with its theoretical prediction (MAD).

3.1 Measurement

The beam response is defined as 	rj = ∂	u/∂θj , where
	u is the vector of orbit distortion at the BPMs (in x or z
plane) caused by a kick angle of θ by steerer magnet j.
The 	rj can be combined to a matrix Rij = ∂ui/∂θj . The
theoretical beam response matrix is calculated in analogy
to equation (1) as

Rij =
√
βjβi

cos(πQ− |ψj − ψi|)
2 sinπQ

.

To measure R, a set of kicks ∆θj,k is successively applied
to all steerers while the orbit distortions ∆	uk are measured.
The averaged Rij = 〈(∆ui/∆θj)k〉 is a good approxima-
tion to the response matrix. The measurement is done by an
automated software program and takes less then 10 minutes
for both planes.

3.2 Local Bumps

To calculate a closed orbit bump, a combination of
three steerer kicks must be found that have minimal ef-
fect on the orbit outside the bump region while produc-
ing a given distortion ∆u within. Let 	a,	b,	c be the or-
bit responses 	ra, 	rb, 	rc respectively but with the values
Rij within the bump region removed. Then the bump is
closed when (θa	a+θb

	b+θc	c)2 reaches its minimum while

θaRia + θbRib + θcRic = ∆u at BPM i within the bump.
This can be achieved by

θb = θa
(	a ·	b)	c2 − (	a · 	c)(	b · 	c)

(	b · 	c)2 −	b2	c2 ≡ θa Fb

θc = θa
(	a · 	c)	b2 − (	a ·	b)(	b · 	c)

(	b · 	c)2 −	b2	c2 ≡ θa Fc

θa =
∆u

Ria + Fb Rib + Fc Ric

A bump with four steerers can be calculated in a similar
way [4].

3.3 Global Orbit Feedback

The best corrector method can be implemented by min-
imizing the residual error εj = |	rj θj − 	u| with respect to
a steerer kick θj . This leads to a kick of θj = 	rj · 	u/	r · 	r.
The best corrector is the steerer j whose εj is the least.
One can show that this is the one with the largest effectiv-
ity Ej ≡ (	rj · 	u)2/	r · 	r.

We often use the alternative method of the most efficient
corrector. That is the steerer whose response vector is most
similar to the orbit to be corrected, i.e. (	rj · 	u)2 is the
largest. The kick θj is calculated the same way as for the
most effective corrector, but tends to have smaller values.
This gives a slightly less optimal correction but has the ad-
vantage that the limits of the steerer kicks are not reached
so soon.

The absolute closed orbit has been reduced to below
±100µm in each plane, with short-time drifts of less than
±50µm over several hours.

4 SUMMARY AND OUTLOOK

Successive progress of monitor calibrations and beam
based orbit feedback have added to a significantly im-
proved closed orbit at DELTA. Lifetime and beam stabil-
ity have been increased. More calibrations are to be taken
to verify a successive improvement in monitor offsets and
to study heat induced monitor movements as a function of
DELTA beam current.
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