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Abstract

Several improvements have been done on space charge
calculations in the PIC code ORBIT[1], specialized for
high intensity circular hadron accelerators. We present re-
sults of different Poisson solvers in the presence of conduc-
tive walls.

1 PIC TRACKING WITH SPACE
CHARGE

ORBIT uses a split operator technique. PIC particles[2]
are propagated in the bare lattice using maps generated by
MAD[3]. Then, space charge transverse momentum kicks
and longitudinal energy kicks are applied.

2 DIFFERENTIAL POISSON SOLVERS

To find the scalar electricΦ and the magnetic vector
potential �A, the herd is binned on a grid according to
(x, y, c∆t) to find the charge densityρ, and according to
(px, py, ∆p/p), to find the current density�j. Then, we
solve the partial elliptic differential equations (Poisson’s)
for Q → P

∇2Φ(P ) = − ρ(Q)
ε0

; ∇2 �A(P ) = −�j(Q)
µ0

(1)

In ORBIT we implemented two differential 2D solvers
(i) LU Decomposition plus matrix multiplication, and (ii)
Successive Over Relaxation (SOR).

For (i), express the Laplacian operator∇2 in discrete
form on aM × N grid that extends to wall. For the first of
Eqs.(1) it is (the second is formally identical):

−4πρij = Lkl
ij Φkl ; Φ(P ) = − 1

4πL−1ρ(Q) (2)

- this is anM 2×N2 band-sparse matrix (δ is Kronecker’s),
whose inverse is unfortunately not sparse (Fig.1) -

Lkl
ij = −4δk

i δl
j + δk

i+1δ
l
j + δk

i−1δ
l
j + δk

i δl
j+1 + δk

i δl
j−1

and multiply the inverse by the (M × N ) �ρ
For (ii), solve by iteration, starting with a guess. At step

k + 1 the discretized Poisson’s is

Φk+1
i,j =

1
4

(
Φk

i−1,j + Φk
i,j+1 + Φk

i+1,j + Φk
i,j−1 − ρi,j

)
.

Since the beam density evolves slowly from one space
charge node to the next, iterative techniques show rapid
convergence.
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Figure 1: Direct and inverse Laplace Matrix.

Figure 2: Solving with perfectly conducting walls

Better iterative procedures used were: Basic SOR (most
efficient for small grids,M, N < 128), SOR with Cheby-
chev acceleration (large grid), and Conjugate Gradient, that
showed the most rapid convergence.

Fig.2 schematically shows how to achieve a solution of
the system of Eq.(2). Walls are represented byn empty
dots. the interior bym full dots. The system of equations is
exactly determined:n + m known quantities, i.e.Φ = 0 at
then empty dots andρ at them full dots;m+n unknowns,
i.e. m values ofΦ to be calculated at the full dots and
ρimage at then empty dots.

3 3-D TREATMENT OF SPACE CHARGE

Basic ideas:

• Space is the independent variable;

• To solve Poisson with all particles at the same time,
at each space charge node in the lattice we expand the
beam (Fig.3);

• 3.rd dimension is obtained by slicing the beam (Fig.4)

We use a transverse grid terminated at wall boundary,
and a longitudinal grid that covers the length of the beam
bunch. For long bunches in synchrotrons it is reasonable to
make longitudinal grid steps much larger than in the trans-
verse dimension. This is justified since (i) the space charge
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Figure 3: Expanded matched beam. Beam envelope is also
shown

PAC2001

Figure 4: Slicing a beam. Wavy lines: envelope of the
beam (β-wave). Dashed vertical lines: planes where to
solve Poisson

distribution varies smoothly along the beam, and (ii) the
motion along the beam is much slower than in the trans-
verse.

We cut the beam in slices, long enough that the average
density, the transverse aspect ratio of the slice, and the wall
configuration around the slice can be considered constant.

ρ(x, y, z) = ρ⊥(x.y) ρ‖(z).

and only solve the 2D transverse problem simultaneously
in each slice by parallel computation. A slice length is a
fraction of the distance between successive envelope waists
and is associated with the local wall configuration, stored
together with the the transfer maps to completely charac-
terize the machine. A similar approach is been used by
L.G.Vorobievet al at Michigan [4] [5].

4 COMPARISON OF 2-D SOLVERS

We compared the SC field calculated with integral
solvers (BF and FFT, of a previous version of ORBIT) with
a SOR differential solver on a256 × 256 grid, conductive
walls, and a Gaussian random beam in the chamber center
(Fig.5).

The BF field goes to zero at large distance, while SOR
ends at the walls with a finite value, where the image charge
density is equal to the field and the field lines are perpen-
dicular. The sum of the image charges equals the total of
the real charges. In this case the images are uniformly dis-
tributed.

Another example: potential and image on the walls cal-
culated with for a Gaussian distributed beam off center in
the chamber (Fig.6).
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Figure 5: Comparison of field between 2-D BF and SOR
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Figure 6: Beam offset inx andy in a square chamber. (a)
real charge and image charge, (b)ρ, Φ, andE

5 3-D FORCES IN A LONG BEAM

Transverse kicks depend on the transverse aspect ratio of
a slice (Fig.7). For the same℘, the force is on the average
larger where the value of the Twissβ function is smaller,
and vice-versa. This is shown in Fig.7 and Fig.8 from a
SOR simulation of a FODO lattice.

Once we haveΦ, the space charge force and the momen-
tum kick on each macro are

�F (P ) = e
γ2

�∇φ ; ∆�p
p = 1

p

∫
�F dt. (3)

With dt = ∆t = L/βc, the transverse momentum kick
and the longitudinal energy kick are

δp⊥
p = ℘∂φ

∂r L⊥ ; δ∆E
E = β2℘∂φ

∂z L‖ (4)

with the separation between successive transverse SC
kicks L⊥, the separation between longitudinal kicksL‖,
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Figure 7: Sliced expanded beam in 3D. The aspect ratios
of different slices are evident
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Figure 8: (a) SC forceFx vs. x in each of a 40-slice beam
whose central slice is in a defocusing lattice location, (b)
SC forceFy vs. y
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Figure 9: Maximum transverse kick in a 9-slice beam
(AGS) compared with 2D calculation

the perveance

℘ =
4πλqhr0

∆xβ2γ3m0
,

with λ the charge per unit length and∆x the size of a
square grid cell.

Transverse kicks depend on the transverse aspect ratio
of a slice. For the same℘, the force is on the average
larger where the value of the Twissβ function is smaller,
and vice-versa (Fig.9).

A longitudinal kick calculated from the difference of po-
tential between analogous(x, y) points in the median trans-
verse plane of successive slices (Fig.10) is compared with
the traditional formula for a beam of radiusa in a round
pipe of radiusb [6].

(∆E)SC ∝ Z0
λ′

2γ2

[
1 + 2 ln

b

a
+ f(r)

]
(5)

Z0 is the impedance of free space and ‘λ ′ the charge gradi-
ent along the beam.

Fig.11 is a 3D rendition of the longitudinal force vs.x
in the horizontal planey = 0.
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Figure 10: Longitudinal SC energy kick in a 9-slice beam
(AGS). Each line: distribution of kick for variousx, y.
Thick line: simulation that uses the standard equation

’forcez.gnu’
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Figure 11: Longitudinal energy kick in 3D
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