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Abstract

Based on the Vlasov-Maxwell equations describing the
self-consistent nonlinear beam dynamics and collective
processes, the evolution of an intense sheet beam prop-
agating through a periodic focusing field has been stud-
ied. In an earlier paper [1] it has been shown that in
the case of a beam with uniform phase space density the
Vlasov-Maxwell equations can be replaced exactly by the
macroscopic warm fluid-Maxwell equations with a triple
adiabatic pressure law. In this paper we demonstrate that
starting from the macroscopic fluid-Maxwell equations a
nonlinear Schroedinger equation for the slowly varying
wave amplitude (or a set of coupled nonlinear Schroedinger
equations for the wave amplitudes in the case of multi-wave
interactions) can be derived. Properties of the nonlinear
Schroedinger equation are discussed, together with soliton
formation in intense particle beams.

1 INTRODUCTION

Of particular importance in modern accelerators and
storage rings operating at high beam currents and charge
densities are the effects of the intense self-fields produced
by the beam space charge and current on determining de-
tailed equilibrium, stability and transport properties. In
general, a complete description of collective processes in
intense charged particle beams is provided by the Vlasov-
Maxwell equations for the self-consistent evolution of the
beam distribution function and the electromagnetic fields.
As shown in [1] in the case of a sheet beam with con-
stant phase-space density the Vlasov-Maxwell equations
are fully equivalent to a warm-fluid model with zero heat
flow and triple-adiabatic equation-of-state.

In the present paper we demonstrate that starting from
the hydrodynamic equations, and using the renormalization
group (RG) technique [2, 3, 4, 5] a nonlinear Schroedinger
equation for the slowly varying single-wave amplitude can
be derived. The renormalized solution for the beam den-
sity describes the process of formation of periodic holes in
intense particle beams.

2 THE HYDRODYNAMIC MODEL

We begin with the hydrodynamic model derived in [1]
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Here �(x; s) = n(x; s)/N and v(x; s) are the normal-
ized density and the current velocity, respectively, G(s +
S) = G(s) is the periodic focusing lattice coefficient,
v2

T = 3P̂0/2n̂3
0 is the normalized thermal speed-squared,

and P̂0/n̂
3
0 = N2/12A2 is a constant coefficient [1], where

N is the area density of sheet beam particles, and A is the
constant phase-space density. Moreover,ψ(x; s) is the nor-
malized self-field potential

ψ(x; s) =
ebφ(x; s)
mbγbβ2

b c
2
,

where φ(x; s) is the electrostatic (space-charge) potential,
mb and eb are the rest mass and charge of a beam particle,
and βb and γb are the relative particle velocity and Lorentz
factor, respectively. Finally, the quantity K is the normal-
ized self-field perveance defined by

K =
2Ne2b

mbγ3
bβ

2
b c

2
.

In what follows the analysis is restricted to the smooth
focusing approximation

G(s) = G = const, (2.2)

and assume that there exist nontrivial stationary solutions
to (2.1) in the interval x ∈ (−x(−), x(+)

)
, and that the

sheet beam density is zero (� = 0) outside of the interval.
The change of variables

ξ = x+ x(−), Ψ = ψ −Gx(−)x (2.3)

enables us to rewrite (2.1) in the form
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Clearly, the system (2.4) possesses a stationary solution
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, v0 ≡ 0, Ψ0 = −Gξ
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+ const.

(2.5)
Here, the uniform density �0 is normalized according to

x(−) + x(+) =
1
�0

=
2πK
G

. (2.6)
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3 RENORMALIZATION GROUP
REDUCTION OF THE

HYDRODYNAMIC EQUATIONS

Following the basic idea of the RG method, we represent
the solution to equations (2.4) in the form of a standard
perturbation expansion in a formal small parameter ε as

� = �0 +
∞∑

k=1

εk�k, v =
∞∑

k=1

εkvk, (3.1)

Ψ = −Gξ
2

2
+
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k=1

εkΨk.

Before proceeding with explicit calculations order by order,
we note that in all orders the perturbation equations acquire
similar general form. Eliminating vn and Ψn, it is possible
to obtain a single equation for �n alone, i.e.,
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where the functions αn(ξ; s) and βn(ξ; s) involve contri-
butions from previous orders and are considered known. It
is evident that in first order α1 = β1 = 0. Imposing the
condition

1/�0∫

0

dξ�1(ξ; s) = 0, (3.3)

which means that linear perturbation to the uniform sta-
tionary density �0 should average to zero and not affect the
normalization properties on the interval

(
0, x(−) + x(+)

)
,

we obtain the first-order solution

�1(ξ; s) =
∑

m �=0

Ame
iχm(ξ;s), χm(ξ; s) = ωms+mσξ.

(3.4)
Here, Am are constant complex wave amplitudes, and the
following conventions and notations

ω−m = −ωm, σ =
G

K
, A−m = A∗

m. (3.5)

have been introduced. Moreover, the discrete mode fre-
quencies ωm are determined from the dispersion relation

ω2
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v2
Tσ

4
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In addition, the first-order solution for the current velocity
can be expressed as
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In obtaining the second-order perturbation equation
(3.2), we note that
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Thus the second-order solution for the density �2(ξ; s) is
found to be

ρ2(ξ; s) = −
∑

m,k �=0

αmkAmAke
i[χm(ξ;s)+χk(ξ;s)], (3.9)

where
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v2

Tσ
4

2π2
(m+ k)2 +G. (3.11)

Having determined �2, the second-order current velocity
v2(ξ; s) can be found in a straightforward manner. The re-
sult is

v2(ξ; s) =
1
�0σ

∑
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(3.12)
where
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αmk, βm,−m = 0. (3.13)

In third order, the functions α3 and β3 entering the right-
hand-side of equation (3.2) can be calculated utilizing the
already determined quantities from the first and second or-
ders, according to
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It is important to note that the right-hand-side of equation
(3.2) for �3 contains terms which yield oscillating terms
with constant amplitudes to the solution for �3. Apart from
these, there is a resonant term (proportional to e iχm(ξ;s))
leading to a secular contribution. To complete the renor-
malization group reduction of the hydrodynamic equations,
we select this particular resonant third-order term on the
right-hand-side of equation (3.2). The latter can be written
as

(
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− �0

∂β3

∂ξ

)

res

=
∑

m,k �=0
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(3.16)
where
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. (3.17)

Some straightforward algebra yields the solution for
�3(ξ; s) to equation (3.2) in the form

�3(ξ; s) =
∑

m �=0

Pm(ξ; s)eiχm(ξ;s) + . . . , (3.18)
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where the dots stand for non-secular oscillating terms.
Moreover, the amplitude Pm(ξ; s) is secular and satisfies
the equation

L̂m(ξ; s)Pm(ξ; s) =
∑

k �=0

ΓmkAm|Ak|2, (3.19)

where the operator L̂m is defined by
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(3.20)
We can now construct the perturbative solution for � up

to third order in the small parameter ε. Confining attention
to the constant stationary density �0 and the fundamental
modes (first harmonic in the phase χm), we obtain

�(ξ; s) = �0 + ε
∑

m �=0

[Am + ε2Pm(ξ; s)
]
eiχm(ξ;s).

(3.21)
Following the basic philosophy of the RG method, we in-
troduce the intermediate coordinate X and “time” S and
transform equation (3.21) to

�(ξ; s) = �0 + ε
∑

m �=0

{Am(X ;S)

+ε2[Pm(ξ; s) − Pm(X ;S)]
}
eiχm(ξ;s). (3.22)

Note that the transition from equation (3.21) to equation
(3.22) can always be performed by enforcing the constant
amplitude Am to be dependent on X and S, which is in
fact the procedure for renormalizing the standard perturba-
tion result. Since the general solution for �(ξ; s) should not
depend on X and S, by applying the operator L̂m(X ;S)
[which is the same as that in equation (3.20) but with
ξ → X and s → S] on both sides of equation (3.22), we
obtain

L̂m(X ;S)Am(X ;S) =
∑

k �=0

ΓmkAm(X ;S)|Ak(X ;S)|2,

(3.23)
where we have dropped the formal parameter ε on the right-
hand-side. Since the above equation should hold true for
any choice of X and S, we can set X = ξ and S = s.
Thus, we obtain the so-called proto RG equation [3, 4, 5]
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ΓmkAm(ξ; s)|Ak(ξ; s)|2.
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Introducing the new variable
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and neglecting the second order derivatives ∂ 2/∂s2 and
∂2/∂s∂ζm, we finally arrive at the RG equation for the m-
th mode amplitude
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4 THE NONLINEAR SCHROEDINGER
EQUATION FOR A SINGLE MODE

Equation (3.26) represents a system of coupled nonlinear
Schroedinger equations for the mode amplitudes. Neglect-
ing the contribution from modes with k �= m, for a single
mode amplitude Am, we obtain the equation

2iωm
∂Am

∂s
− v2

Tσ
2G

2π2

∂2Am

∂ζ2
m

= −Γm|Am|2Am, (4.1)

where

Γm = −Γmm =
2

3G�2
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(
16ω4

m − 11Gω2
m +G2

)
. (4.2)

It is easy to verify that Γm is always positive. In nonlinear
optics equation (4.1) is known to describe the formation
and evolution of the so-called dark solitons [6]. In the case
of charged particle beams these correspond to the forma-
tion of holes or cavitons in the beam. Since the renormal-
ized solution for the beam density �(ξ; s) can be expressed
as

�(ξ; s) = �0 +
∑

m �=0

Am(ξ; s)eiχm(ξ;s). (4.3)

these holes have periodic structure in space ξ and “time” s.

5 CONCLUDING REMARKS

Based on the renormalization group method, a system of
coupled nonlinear Schroedinger equations has been derived
for the slowly varying amplitudes of interacting beam-
density waves. Under the approximation of an isolated
wave neglecting the effect of the rest of the waves, this sys-
tem reduces to a single nonlinear Schroedinger equation
with repulsive nonlinearity. The latter describes the for-
mation and evolution of holes in intense charged particle
beams.
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