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Abstract 
 
A globalised cascaded scattering matrix scheme serves 

as practical method to simulate the electromagnetic (e.m.) 
fields in the groups of cavities which constitute the main 
accelerating structures of a linac. The cascaded scattering 
matrix technique allows realistic fabrication errors to be 
incorporated in an efficient manner without the necessity 
to re-mesh the entire geometry. Once the unit cell 
structures have been determined using a numerical 
scheme, such as finite element method utilized here, the 
overall cascaded scattering matrix calculation requires 
little in the way of computational resources or time and is 
consequently an efficient means of characterizing the e.m. 
field. Details of the e.m. field and trapped modes for large 
scale linac simulations applied to the baseline cavities for 
the ILC and applications to XFEL are presented. 

INTRODUCTION 
In large accelerating structures such as the ILC (in both 

its baseline and alternative higher gradient designs) beam 
break up and emmitance dilution are major design 
concerns; hence the need to be able to accurately model 
large fractions of these structures in which effects such as 
wakefields, trapped modes, coupler kicks have been taken 
into consideration. 

The modelling procedure is further complicated by 
machining and alignment errors. The effects of these 
errors needs to be ascertained, particularly for the 
transverse higher order modes (HOMs). A full scale 
simulation of large sections of the ILC is beyond what 
can presently be achieved by the traditionally employed 
numerical methods (such as the finite element method). 
Moreover the inclusion of realistic defects for a root mean 
squared (RMS) calculation of many machines will be 
prohibitively time consuming as it will require re-meshing 
of the problem domain.  

The generalised scattering matrix technique is a mature 
RF method [1] requiring little in the way of computational 
resources or time allowing large structures, beyond the 
means of the traditionally employed numerical 
techniques, to be modelled. The generalised scattering 
matrix technique (and similar methods such as the 
coupled scattering calculation CSC [2], [3], [4]) has been 
shown to be capable of rapidly and accurately simulating 
structures [5]. The technique is very accurate as 
demonstrated in [5] and is capable of incorporating 
misalignments and defects into the calculation in an 
efficient manner (refer to [6]) allowing rapid RMS 
calculations to be preformed.  

In practice it is necessary to obtain the electromagnetic 
field for a structure in its entirety. This aspect using GSM 

(or a similar scattering matrix technique) is discussed in 
the following section. 

Presented in this paper is a new GSM formulation 
which allows rapid field calculation across an accelerating 
structure and the location of potentially trapped modes. 

S MATRIX FORMULATIONS 
There are broadly speaking three main methods, or 

subcategories, by which the e.m. field may be re-derived 
from S matrices: 1) performing an eigen mode simulation 
in which a planar wave is applied at each of the 
subsections (this is the method employed by CSC); 2) 
considering the absolute value of the wave amplitudes of 
the electrical fields at the ports of the subsections; and  3) 
mode matching. 

CSC is a method whereby individual S matrices of 
various subsections of a large structure are combined and 
used to determine the amplitudes at various ports of the 
subsections [2], [3], [4]. This method has the ability to 
determine the scattering properties of irregular structures 
(including cavities with couplers). The electromagnetic 
fields using CSC are determined using the amplitudes at 
the individual ports of each subsection as boundary 
conditions in a separate eigen mode calculation in which a 
planar wave with the calculated amplitude is excited at 
each subsection port [2], [3], [4]. This method of 
determining the e.m. field may also be applied to the 
GSM technique, in which a recursive S matrix tracking 
scheme may be used [7], [8] to determine the amplitudes 
at each of the subsections which are then used as 
boundary conditions in separate calculations [7]. The 
disadvantage is that one would have to perform many 
separate calculations to re-derive the electromagnetic 
field. 

A practical and efficient means of looking at the field 
distribution within a large accelerating structure is to 
focus on the field at a series of points within the structure. 
This is the idea that was utilised in a simplified version of 
CSC [9] in which the absolute value of the wave 
amplitudes at the ports of the subsections was calculated. 
This allows a rapid picture of the field distribution at the 
ports of the subsections to be ascertained and permits 
trapped modes to be quickly determined. 

There are a number of mode matching schemes used to 
re-derive the e.m. field from a GSM calculation [8], [10], 
[11], [12]. The implementation of the previous mode 
matching schemes to accelerator structures are based 
upon calculating the amplitudes of the excited modes via 
a beam current. Using an orthogonality condition at an 
interface between regions where the field must be 
continuous allows the field to be calculated within the 
surrounding transitional sections. 
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PHYSICAL INTERPRETATION OF A GSM 
TECHNQIUE FOR RAPID FIELD 

DETERMINATION  
The model described below is based on the following 

assumptions: 1) the structure is a travelling wave structure 
and 2) the travelling waves are fed into the structure via 
one region/port and are then considered to propagate in 
that direction from region I to II. Consider a transition 
between two regions as depicted in Fig. 1. 
 

 
Figure 1: Representation of the series generated from a 
wave infinitely reflected within a transition. 

 
An incoming wave from region I  i.e. Ι

21S  will 
propagate across the transition decaying according to 

zjk
nmz

neT −= δ  (in which the subscripts n and m relate to 
the mode numbers and δ  is a Kronecker function i.e. 

0,1 == ≠= mnmn δδ ). When it reaches region II it will be 

reflected back to region I and will gain ΙΙ
11S  at the 

boundary gTz = . The wave travels back decaying 

according to ( )zgjk
nmzg

neT −−
− = δ  until it reaches region I 

where it is reflected back to region II and gains Ι
22S . This 

process is repeated an infinite number of times and may 
be written as the form of Eq. (1), where U  is the Identity 
matrix. In a similar fashion the reflected waves 
propagating from region II can be written in the form of 
Eq. (2) in which the reflected wave ΙΙΙ

2111 STS g  travels back 

to region I decaying according to ( )zgjk
nmzg

neT −−
− = δ ; 

upon each successive reflection the reflected wave 
acquires an additional multiple of  gg TSTS ΙΙΙ

2211 .  Note in 

Eq. (2) zjk
nmz

neT δ=− . 
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Utilising the transverse mode matching procedure we can 
describe the electric field components (transverse ⊥  and 
longitudinal  || ) in terms of Eq. (3) and (4). 
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In Eq. (3) and (4) nev  is the field pattern of mode “n” [13] 
in which Y  is the admittance.  If we consider an infinitely 
small gap length between region I and II i.e. 

UTT nmzz === − δ  then we obtain Eq. (5) and (6). 
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Eq. (5) and (6) gives us the electric field across the ports 
used in a GSM technique, where ΙΙS  is the S matrix of 
the section cascaded from the right of the transition and 

ΙS  is the S matrix of the section cascaded from the left of 
the transition. 0

11S  and 0
21S  may be thought of as the 

wave amplitudes in equations 3 and 4. Eq. (1), (2), (5) and 
(6) are similar to the methodology employed by CSC [9] 
which allows one to quickly ascertain the fields across a 
structure at the transitional sections used to generate the 
GSM calculation.  

As an example of this GSM field determination 
technique, let us consider a 9 cell TESLA structure 
operating in the 5th dipole region [14] since this is a 
region where modes are potentially trapped.  Comparison 
between the HFSSv11 simulations for a complete 
structure and those obtained using GSM are presented in 
Fig. 2 and 3, in which the field profile calculated using 
the GSM method has been normalised with respect to the 
maximum field value. In Fig. 2 an iris to iris unit cell 
structure was chosen for a 9 cell TESLA structure 
composed solely of middle cells. In Fig. 3 a more detailed 
picture of the field is generated using iris to equator unit 
cell structures for a complete TESLA 9 cell structure with 
beam pipes. 

The unit cell structures required for the cascading 
calculations were determined using HFSSv11 where a 
driven modal solution was sought in which the FEM mesh 
was adaptively refined until an overall accuracy better 
than 0.01% was obtained for the resulting S parameters 
followed by a frequency sweep in linear steps of 1MHz. 
The dipole modes for the symmetrical structures 
calculated in this paper were modelled using a quarter of 
the geometry and E and H symmetry planes 
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Figure 2: Field simulations of a 9 cell TESLA structure 
made up entirely of middle cells operating in the 5th 
dipole band at 3.039GHz. A wave is launched from the 
left region to excite the field. Displayed above is the first 
mode, the TE11 contribution of the total field. Above in 
2(a) the full HFSS v11 simulation, below in 2(b) is the 
GSM field calculation. 

 

 
 
 
 
 
 
 
 
 

 
 
Figure 3: Field simulations of a full 9 cell TESLA 
structure operating in the 5th dipole band at 3.075GHz. A 
wave is launched from the left region to excite the field. 
Displayed above is the first mode, the TE11 contribution 
of the total field. Above in 3(a) is the full HFSS v11 
simulation, below in 3(b) is the GSM field calculation. 

 

DISCUSSION 
The method presented here was derived for a travelling 

wave structure. A standing wave structure can be model 
by modifying the infinite series in Eq. (1) and (2) with the 

addition of the infinite series generated from an outgoing 
wave from region II ( ΙΙ

11S ). The main advantage of the 
method is that it allows rapid field determination across a 
structure as a function of frequency and position. Care 
must be taken to avoid missing trapped modes that may 
be overlooked as a consequence of the unit cell choice; if 
the field does not lie upon the chosen subsection point 
then a misleading representation of the field across the 
structure will be obtained. One way to circumvent this is 
to consider the overall geometry to be composed of many 
unit cells and in this way a more appropriate 
representation of the field distribution will be obtained (as 
seen in Fig. 3).   

For the TESLA (or any other geometry which varies 
transversely) the propagation constant varies along the 
longitudinal axis for any given region. Previous mode 
matching methods have relied upon narrow wide narrow 
transitions (NWN) in which the propagation constant is a 
constant within a particular region. To circumvent this 
problem one could decompose the geometry into a series 
of NWN transitions. A practical calculation would 
therefore involve a sufficiently large proportion of NWN 
transitions of the geometry to adequately represent the 
field within the structure. An alternative approach to the 
other mode matching schemes previously mentioned 
would be to calculate the amplitudes of a transition as 
derived in the previous section using 0

11S  and 0
21S . The 

development of this technique is the basis of ongoing 
work. 
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