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V.I. Man’ko, P.N. Lebedev Physical Institute, Moscow, Russia

Abstract

A novel tomographic approach to charged-particle beam
physics is suggested in the framework of Thermal Wave
Model (TWM). It is shown that the particle beam transport
in the phase-space can be described in terms of a marginal
distribution which has the features of a classical proba-
bility distribution, including its positive definiteness. It
is shown that the above marginal distribution satisfies a
Fokker-Planck-like equation as well as contains all the in-
formation of the Wigner function, even if the latter is not
positive definite. Nevertheless, one can directly start from
the classical single-particle physics where the potential is
given and go directly to the Fokker-Planck-like equation
which incorporates all the quantum-like effects of TWM.

1 INTRODUCTION

In accelerator physics, the main tool of the conventional
approaches to describe the particle-beam behavior is rep-
resented by the positive classical probability-distribution
function of the particle in the phase space and its evolu-
tion along the beam path [1]. On the other hand, non-
conventional quantum-like methodologies have been re-
cently proposed [2]. In particular, the thermal wave model
(TWM) [3] has been constructed by making a transition
from the geometric electron optics [4] to a wave electron
optics in order to describe the behavior of a particle beam
in terms of a complex function satisfying the Schrödinger-
like equation where the beam emittance plays the role of
the Planck’s constant. TWM takes into account the elec-
tronic rays spreading due to finite temperature and its nature
is completely classical. Nevertheless, the formalism used
is mathematically equivalent to the quantum one. This
procedure to transit from the classical to a quantum-like
formalism (but still describing a classical system), is fully
similar to the one of Gloge and Marcuse [5] to recover e.m.
wave optics from e.m. geometrical optics to construct the
quantum-like theory of light rays in paraxial approxima-
tion. In semiclassical approximation, the above transition
can be obtained also with a deformation procedure to the
classical phase-space equation for electronic rays and for
an arbitrary potential [6]. But, whatever the quantum-like
procedure used is, to perform the transition, the following
considerations hold.

� The classical 2-D phase-space distribution, say
�(x; p; z), for the transverse beam dynamics (x and

p being the single-particle position and momentum,
respectively, and z being the propagation coordinate
which plays the role of a time-likevariable), is solution
of the following equation:�
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which describes a phase-space evolution of electronic
rays, and where U = U (x; z) is an effective dimen-
sionless potential acting on each single particle. By
introducing the operator

dDU � bA; bB; z
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(2)
for any operators bA and bB, the above transition allows
us to go from classical to a quantum-like phase-space
distribution, say �w(x; p; z) satisfying the following
von Neumann-Moyal-like equation [7]�
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(3)

� Within the classical context, � is positive definite
whilst�w is not and coincides with a Wigner-like func-
tion. In fact, due to a quantum-likeuncertainty relation
introduced by the thermal spreading among the elec-
tronic rays, �w can be also negative and is appropri-
ately called (as in quantum mechanics) a quasidistri-
bution. The above deformation procedure has shown
that, in semiclassical approximation, (1) and (3) for-
mally coincide unless than phase-space regions of size
smaller than �, where, due to the thermal uncertainty,
one cannot resolve among two or more electronic
rays [6]. Correspondingly, � and �w , within the same
above hypothesis, seem to be equivalent. Additionally,
other aspects of the quantum-like descriptions given by
the Wigner-like function and Husimi function [8] were
considered in the framework of TWM [6, 7, 9].

� When the semiclassical approximation is removed,
thus � and �w are not equivalent anymore, and the
discrepancy (quantum-like corrections) between these
two distributions represents a quantum-like effect
that in TWM accounts for an effective description
of charged-particle beams in the presence of non-
negligible thermal spreading among the electronic
rays [6].
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From the above considerations, we can conclude that
TWM, through the quantization procedure, provides for a
map

� (x; p; z) =) �w (x; p; z) ;

like in quantum mechanics. In order to keep the above effec-
tive quantum-like description in a classical context, we now
ask: is it possible to construct an invertible map which al-
lows us to reverse the above transition and go back from �w
to a classical distributionbut containingall the information
of �w? In the next section we try to give a positive answer
to this question, mainly on the basis of investigations that,
recently, introduced a new method for measuring quantum
states in quantum mechanics and quantum optics, called op-
tical tomography [10, 11] or symplectic tomography [12].
As was shown in [13, 14, 15, 16] it is possible to describe a
state in quantum mechanics by means of positive marginal
distribution function instead of wave function or density
matrix (or instead of Wigner function or Husimi function)
because the marginal distribution determines completely
Wigner function (density matrix). The aim of the work is to
introduce a tomography approach to determine the particle
beam state in the framework of quantum-like TWM and to
use positive marginal probability distributions in quantum-
like domain of the particle-beam behavior.

2 BEAM TOMOGRAPHY IN
QUANTUM-LIKE DOMAIN: A

FOKKER-PLANCK-LIKE EQUATION
FOR BEAM EVOLUTION

In this section, we obtain the evolution equation describing
the particle beam in terms of a Fokker–Planck-type equa-
tion for positive probability distribution function. We also
obtain this beam-evolution equation for potential of practi-
cal interest (quadrupole plus multipoles).
It is well known from quantum mechanics that the Wigner
function [17] represents the nonnegative density operatorb� [18, 19] in a particular representation. It is Hermitian,
i.e. b�y = b�, and its trace is equal to unity: Tr b� = 1.
For any representation, diagonal elements of the density
operator are nonnegative, since they describe probability
distribution function in a corresponding basis. In coordi-
nate representation, we have hx j b� j xi = P (x), where
P (x) is the position distribution function. The Wigner-
like function �w , satisfying Eq.(3), is related to the density
matrix in coordinate representation by invertible transform
(hereafter we take � = 1) [7]:

�w (q; p) =

Z
hq +

u

2
j b� j q � u

2
i exp (�ipu) du (4)

and

hx j b� j x0i = 1

2�

Z
�w

�
x+ x0

2
; p

�
eip(x�x

0) dp : (5)

On the basis of the Ref.[20], it is possible to prove
that, for any Hermitian operator bX , the Fourier trans-

form of a characteristic function �(k) � hexp
�
ik bX�i =

Tr b� exp�ik bX�i i.e.,

w(y) =
1

2�

Z
�(k) exp (�iky) dk

is the distribution function with classical features. In
fact, by taking into account the positivity of the diag-
onal elements of the density operator one can see that
w(y) = hy j b� j yi � 0 and

R
w(y) dy = 1. By con-

sidering a specific operator bX of the form bX = �q̂ + �p̂,
one can write that:

w (X; �; �) =

Z
�w(q; p) e

�ik(X��q��p) dk dq dp

(2�)2
;

(6)
i.e., w (X; �; �) � 0, and

R
w (X; �; �) dX = 1. In anal-

ogy with quantum optics, we call this functionquantum-like
marginal distribution of the particle beam. Note that we
have used here the property of the Wigner distributionfunc-
tion

Tr b� eik(�q̂+�p̂) = Z �w (q; p) eik(�q+�p)
dq dp

2�
: (7)

Formula (6) can be inverted

�w(q; p) =
1

2�

Z
w (X; �; �) e�i(�q+�p�X) d� d� dX :

(8)
For beam dynamics, one can construct an equation in terms
of marginal distribution following [13]. For the quantum-
like Hamiltonian H = p̂2=2 + U (x; z) ; p̂ = �i @=@x ,
we obtain from (3), in view of (6), the following equation
(� = 1):�
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(9)
For the case of quadrupole-like potential (linear lens), i.e.
U (x; z) = k1(z)x2=2 (k1 being the quadrupole strength),
we have
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Gaussian solutions of (10) have the following form:

w (X;�; �; z) =
1p

2��X(z)
exp

�
�
(X � �X)2

2�X(z)

�
;

(11)
in which �X = �hqi + �hpi.

In general, the evolution equation (9) for the marginal
distribution of the particle beam can be cast in the form
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where U2n+1 (eq) = @2n+1U=@q2n+1 (q = eq), with the op-
erator eq given by eq = � (@=@X)�1 @=@�. This evolution
equation in quantum-like domain can also be presented in
the form
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For potentials of the form

U (x; z) =
1
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2 +
1

4!
k3(z)x

4 +
1
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k5(z)x

6 (12)

(k3, and k5 being the multipole strengths), the correspond-
ing quantum-like evolution equation for the marginal dis-
tribution of the particle beam has the form
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3 CONCLUSIONS

In this paper we have described the particle beam trans-
port in accelerators both in conventional classical context
and in non-conventional quantum-like domain with TWM.
We have shown that in quantum-like domain this func-
tion satisfies a Fokker–Planck-like equation for a positive
marginal distribution function. The method of measur-
ing the particle-beam state suggested here is fully similar
to the one elaborated in quantum optics for optical and
symplectic tomography. In the tomography formalism, the
beam evolution equation for marginal distribution includ-
ing multipole terms has been presented. Note that, when
the quadrupole potential is considered without higher-order
multipoles, the marginal distribution of squeezed coherent
states can be obtained explicitly. According to the proce-
dure used in this paper to determine an evolution equation
for the quantum-like marginal distribution distribution, one
can obtain a similar description also in classical domain.
For example, the evolution equation for the potential given

by (12) in classical domain would be:
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One sees that this equation can be obtained from the
quantum-like one if the terms with high powers of the pa-
rameter � are omitted. These terms are responsible for the
quantum-like corrections to the beam behaviour.
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