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Abstract

Problems of obtaining optimal accelerating structures with
quadrupole and alternate phase focusing are considered. It
is supposed that RFQ and APF H-cavity may be used as
basic structures of ion accelerator driver in the transported
atomic energetical installation. The mathematical control
model of accelerating cavities with RFQ and alternating
phase focusing (APF) is suggested. On the basis of this
model the software realizing the optimization process is de-
veloped. Optimization of RFQ and APF systems is consid-
ered.1

1 INTRODUCTION

During last years Linear Accelerators and Cyclotron Di-
vision of the Efremov Institute in St.Petersburg is work-
ing out ion linacs of a new generation for industry and
medicine. St.Petersburg University takes part in develop-
ment of mathematical providing for these researches. Con-
temporary rf ion linacs use frequencies diapason 400-500
MHz and produce intensive beams with small emittances
and need special modelling codes for beam dynamics and
accelerating structures geometry. The Efremov Institute
use RFQ for particle acceleration up to 2 MeV and drift-
tube linacs that works onπ-mode for acceleration from 2
MeV up to 15 Mev and higher. DTL is not Alvarez type.
Structure consists of separate cells each of them includes
broad outer cylindrical rings. Inside of rings drift tubes
are fastened on massive cross transversal holders (CTH-
structure). This cavity uses alternate phase focusing or
magnetic focusing of the beam. Electromagnetic field dis-
tribution for working type oscillation is according to H(TE)
mode [1]. Both of RFQ and CTH structure types are named
H-resonators in Russia.

The main purpose of the present report is to show the
possibility of application of mathematical methods of con-
trol theory for optimal choice of accelerating and focusing
structures [2]. These methods can be called constructive
methods of control theory. They are based on using of
analytical expression of variation of functional which de-
scribes the quality of the structure. The variation, which
is also functional in the space of infinite dimension, can
be approximated by the functional defined in the space
of finite dimension, namely, gradient of the functional
on the parameters by which the control function can be
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parametrized. After that, minimization of the quality func-
tional can be fullfiled with the usual methods.

2 CONTROL PROBLEM
FORMULATION

In many cases the longitudinal motion can be assumed not
to be depend on the transverse motion of the particles and
the transverse forces acting on a particle are linear on trans-
verse coordinates. Then the longitudinal and transverse co-
ordinates can be considered separately and motion in the
transverse phase space is described by linear model. In this
case, we introduce macroparticle as such particle agregate
that all particles in it have the same longitudinal phase co-
ordinates but different transverse ones. The parameters of
linear model for such agregate in the transverse phase space
can be taken as transverse coordinates of the macroparticle.
The particle interaction also can be include in this model
under some simplifying assumptions one of which is uni-
form distribution of particles in the beam cross-section.

Then charge particles beam can be considered as a dy-
namical system describing by the equations




dZ/dt = f1(t, Z, U) +
∫
Mt,U

f2(Z,Z
′)%(t, Z ′) dZ ′,

dX/dt = h1(t, Z,X,U)+

∫
Mt,U

h2(X,Z,X
′(t, Z ′), Z ′)%(t, Z ′) dZ ′

(1)
whereZ,X are vectors characterizing longitudinal and
transverse motion correspondingly,U = U(t) is control
vector,Z ∈ Rn,X ∈ Rm, U(t) ∈ K ⊂ Rl, t ∈ [0, T ].
The initial values ofZ are supposed to fill some compact
setM0 : Z(0) ∈ M0 ⊂ Rn andX(0) = X0. The image
of the setM0 at the mapping given by the system (1) is de-
noted byMt,U . The integral terms describe the interaction
between macroparticles,%(t, Z) is macroparticles density
and satisfies to the equation

∂ %

∂ t
+
∂ %

∂ Z
·
dZ

d t
+ %

{
divZf1(t, Z, U)+

∫
Mt,U

divZf2(Z,Z
′)%(t, Z ′) dZ ′

}
= 0,

which is partial integro-differential equation with charac-
teristics described by the first equation of the system (1),
with initial condition%(0, Z) = %0(Z), Z ∈M0.
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Let us formulate the control model for this case.
The problem is to minimize the functional

I(U) =

T∫
0

∫
Mt,U

g(t, Zt,Xt)%(t, Zt) dZt dt+

∫
MT,U

G(ZT ,XT )%(T,ZT ) dZT (2)

whereg andG are some integrable ont, Z and differen-
tiable onZ andX functions characterizing the quality of
the beam,Zt ≡ Z(t), Xt ≡ X(t, Zt).

For such problem we can apply general approach (see
[2]) taking into account that integral on some components
of the phase vector, namelyX, is reduced to the only value
of the integrand. The method of optimization is based on
the expression for functional variation

δI = −

T∫
0

∫
Mt,U

{
ΨX(t, Zt)∆Uh1(t, Zt,Xt, U)+

ΨZ(t, Zt)∆Uf1(t, Zt, U)

}
%(t, zt) dZt dt, (3)

∆Uh1 = h1(t, Z,X,U(t) + ∆U(t)) − h1(t, Z,X,U(t)),
∆Uf1 is expressed analogously. The auxiliary forms
ΨX ,ΨZ satisfy to following differential equations and ter-
minal conditions:

dΨX
dt
= −ΨX

{
∂h1

∂X
+

∫
Mt,U

∂h2

∂X
%(t, Z ′) dZ ′

}
−

∫
Mt,U

ΨX(t, Z
′)
∂h2

∂X ′
%(t, Z ′) dZ ′ +

∂g(t, Z,X)

∂X
,

dΨZ
dt
= −ΨZ

{
∂f1(t, Z, U)

∂Z
+

∫
Mt,U

∂f2

∂Z
%(t, Z ′) dZ ′

}

−

∫
Mt,U

ΨZ(t, Z
′)
∂f2(Z,Z

′)

∂Z ′
%(t, Z ′) dZ ′−

ΨX

{
∂h1

∂Z
+

∫
Mt,U

∂h2

∂Z
%(t, Z ′) dZ ′

}

−

∫
Mt,U

ΨX(t, Z
′)
∂h2

∂Z ′
%(t, Z ′) dZ ′ +

∂g(t, Z,X)

∂Z
,

ΨZ(T,ZT ) = −
∂G(Z,X)

∂Z
| Z=ZT
X=X(T,ZT )

,

ΨX(T,ZT ) = −
∂G(Z,X)

∂X
| Z=ZT
X=X(T,ZT )

.

3 APPLICATION FOR RFQ AND APF
CHANNELS

The control model formulated above can be applied in the
following important cases: RFQ channel and drift tubes
channel with APF.

Suppose that the equations of particle transverse motion
in RFQ channel can be written in the form:

d2x/dt2 = Qxx, d2y/dt2 = Qyy

where

Qx,y =
eU0

m0γ
(±

χ

a2
+
k2Θ

π
) sin η cosϕ+Qself x,y, (4)

e andm0 are charge and rest mass of the particles,U0
is intervane voltage,k = 2π/(L/λ), λ = 2πc/ω is
the wavelength,L is modulation period of the electrodes,
χ = 1− 4ΘI0(ka)/π, Θ is effectiveness of acceleration,η
is electrodes modulation phase, andQself x,y is coefficient
accounting self field of the beam.

Suppose also that initially particles fill some ellipses in
the planesx, x′ and y, y′ for each point in longitudinal
phase space. Then at all subsequent instants particles fill
some ellipses describing by symmetrical matrices:Bx,y :
X∗(Bx)−1X ≤ 1, Y ∗(By)−1Y ≤ 1 whereX = (x, x′)∗,
Y = (y, y′)∗. The elements of the inverse matrices satisfy
the equations




dsx,y11 /dt = 2s
x,y
12 ,

dsx,y12 /dt = Qx,ys
x,y
11 + s

x,y
22 ,

dsx,y22 /dt = 2Qx,ys
x,y
12 .

(5)

So, all particles in some point of longitudinal phase
space can be described by these six variables which can be
considered as transverse coordinates in (1). These variables
have simple sense. For example,

√
sx,y11 are envelopes onx

andy correspondingly.
Suppose also that the tranverse variables change so

slowly along the beam axis that transverse field at some
point with coordinatez can be regarded as creating by the
beam with the same transverse particles distribution at all
points along the beam axis as in the point under cosidera-
tion. It is usual assumption. For example, the Kapchinsky-
Vladimirsky distribution is valid in its frames. Besides, as-
sume that self field of particles at some point in longitudinal
phase space is the same as the field of the beam with ellip-
tical cross-section which semiaxes are equal to envelopes√
sx,y11 and that expression for field outside the beam co-

incides with the one inside, i.e. linear onx andy. Under
these assumptions we can take the self field term in (4) in
the form

Qself xx =

∫
M

h2x(X,Z,X
′, Z ′)%(Z ′) dz, (6)
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h2x(X,Z,X
′, Z ′) =

e2

πγ2ε0m0

H(z − z′)√
s
′x
11(
√
s
′x
11 +

√
s
′y
11)

,

(7)
H(∆z) is some smooth integrable function rapidly dimin-
ishing with increase of|∆z|,

∫
H(z) dz = 1. The term

Qself yy can be expressed similarly.
It is more convinient to take the longitudinal coordinate

z as independent variablet in (1) instead the time. In this
case the phaseϕ and the reduce energyγ of a particle can
be taken as longitudinal variables. The equations (5) should
be transformed correspondingly being remained linear.

The equation of longitudinal dynamics can be written in
the form


dϕ/dζ = 2 π γ (γ2 − 1)−1/2,

dγ/dζ = 2 eU0λ
πm0 c

2 kΘ cos η cosϕ+ Fz .
(8)

The termFz is due to the longitudinal action of self field
and determined on the base of the simplified expression for
longitudinal component of the electric field in the channel:

Ez =
2e

πε0a
2J21 (j01)sh

j01L

2a

×

∫
sh

{
j01

a
(
L

2
− |z − z′|)

}
sign(z − z′)%(z′) dz′. (9)

Herea channel apperture. The integral in (9) is taken over
the period of modulation.

For modulation phaseη we have additional equation

dη/dζ = 2 π γs (γ
2
s − 1)

−1/2 − dΦs/dζ

whereΦs is phase of synchronous particle relative to phase
of the space modulation.

The functionsu1 = dΦs/dζ, u2 = Θ, u3 = κ/a2 can
be taken as the components of the control vector. So, the
dynamics equations in RFQ channel have form (1).

For drift tube channel with APF the dynamics equations
are similar and also have the form (1).

4 CONCLUSION

So, in both cases we can use the mathematical control
model described above. The wide choice of functional of
the form (2) is possible. For example, we can take the func-
tional (2) with functionsg andG describing the capture of
the particles in transverse and longitudinal motion corre-
spondingly:

g(t, Z,X) = cZgZ(Z) + cXgX(X).

HerecZ , cX are coefficients,gZ andgX are given by simi-
lar expressions, for example,

gZ(Z) =



(zi − zu i)pi , zi > zu i,
0, zi ∈ [zl i, zu i],
(zi − zl i)pi , zi < zl i,

where pi are some positive numbers. The function
G(Z,X) is expressed similarly.

The technique of optimization is based on approximation
of components of control functions by functions depending
on finite number of parameters. Then method of gradient
descent can be applied [2]. Numerical realization included
replacement of integration by summation and considering
of systems (1) for discrete initial set instead ofM0 as it
is described in [4]. Each point of the initial set has some
weight equal to particle density in this point. The evolu-
tion of these points is described by the dynamics equation
and their weights remain constant as the particle density is
integral invariant.

For the solving of beam dynamics modelling and opti-
mization problems original software environment has been
developed. This software is based on the modern object ori-
ented programming technique. According to this approach,
the program is the set of components and objects which are
necessary for some class of problems. The possibility of
customizing of that components and methods is supposed.

The programs were tested on the known structures with
the frequencies 148.5 MHz and 433 MHz. Results of mod-
elling are satisfactory: close similarlity with known dy-
namics for these structures was obtained. During testing of
the programs the output energy spread and transverse nor-
malized emittance of the beam after optimization can be
essentially decreased compared with ones before the opti-
mization if their initial values were too great.
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