
EFFICIENT C++ LIBRARY FOR DIFFERENTIAL ALGEBRA

John R. Cary, Tech-X Corporation and University of Colorado, Boulder, USA
S. G. Shasharina , Tech-X Corporation, Boulder, USA

Abstract

Differential Algebra is heavily used in accelerator
physics for rapid integration, long-term stability studies,
and non-linear map analysis. C++ with operator
overloading is a natural language for implementing DA,
but sometimes is too slow. We created a prototype of a
DA vector class, which, due to use of features of
multiplication tables, expression templates and reference
counting is faster than other C++ packages.

1 INTRODUCTION
Numerical Differential Algebra methods have found

increasing use as they can be applied to a wide variety of
systems. In the study of system sensitivities or
optimisation, numerical differential algebra methods allow
one to determine how a system varies with parameters to
machine accuracy with little additional programming
effort. There are also applications to dynamical systems,
such as accelerators. DA use has been described in the
literature (see Refs. [1-2]) and comes from the fact that
one can obtain non-linear map by integrating high-order
DA vectors in the differential equations describing particle
motion.

In our definition (more narrow than general differential
algebras), Differential Algebra of order n is formed by
vectors, whose components are obtained by n-order Taylor
expansion of functions in d-dimensional space. To explain
this, we must describe the representation of a DA vector
in the class. In order to represent all functions in terms of
DA vectors, we need to define basic arithmetic operations
(like +, *etc.) between DA vectors and implement them
numerically. There are several numerical libraries
implementing this, but some of them are written in
computationally archaic languages (see Refs. [3–4]),
others are written in C++, but relatively slow for reasons
we describe below (Refs. [5-7]). We created a prototype
of a new C++ library (TXDA) which overcomes usual
limitations of C++ and exploits some features of
multiplication tables for fast multiplication.

2 OVERCOMING TRADITIONAL C++
LIMITATIONS

C++ has many advantages: it is object oriented, has
operator overloading and is widely used. But its
advantages (abstraction) lead to substantial penalties in
speed, if operators are implemented straightforwardly as
described in most textbooks.

2.1 Expression Templates

Simple-minded operator overloading leads to creating
many extra temporaries and extra loops. Lets consider an
example when 3 vectors are added: a = x + y + z. First, a
temporary, temp, for holding (y + z) is created and the
first loop for assigning the value is performed. Then
second temporary, temp2, for (x + temp1) is created and
looping is carried out again. Finally, last loop assigns a
to temp2. Expression Template (ET) technique (Ref. [8])
allows one to effectively unroll these loops into one, so
that the equivalent code will be:

for(int i = 0; i<length; ++i) {
*a = *x + *y * +*z;
 a++; x++, y++, z++;

 }
Some people will say that this is just a hand-coded C,

so what is the point? The point is that ET allows to keep
elegant abstractions of C++ (so that you can use
overloading and write a = b + c + d for such objects as
matrices, vectors etc.), but the computational work will
be equivalent to hand-coded C. This technique was
successfully implemented in our DA vector class for
addition, subtraction, multiplication and division by a
scalar. Resulting speed of these operations is order of
magnitude faster than in ZLIB and LEGO. Examples of
the comparisons results are shown on Figs. 1 and 2: our
DA vector class is an order of magnitude faster than codes
using traditional operator overloading.

DA mult iplicat ion: a = b *

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

0 200 400 600 800 1000 1200 1400 1600 1800

l engt h

C
P

U

s
e

c
s

TXDA

ZLI B

Figure 1: Comparison of the execution time
for by two double numbers in ZLIB and
TXDA (DAV) versus vector length. The
results are obtained on SGI/Indy using the
KCC compiler

1236

2.2 Reference Counting

An object is copied each time it is passed by value into
a function, each time it is returned by value, and each
time it is assigned. Since DA vectors and DA maps can
easily be large (represented by thousands of real numbers),
such copies can take a significant amount of time and
memory even when they are not necessary. For example,
when returning a vector by value, the object is copied to a
variable in the external (to the method) namespace, when
all that is needed is to transfer the object from one
namespace to another.

The reference counting method allows “shallow
copying” (through pointers) with security of the regular
copying. It puts the representation of the object in an
interior letter object and adds to the letter class a counter

that keeps track of the number of references there are to it.
At copy time, one simply increments the number of
references to the letter object. Only when an object is
changed is a new copy of the letter object made. Upon
destruction, the counter is decremented, and the letter
object is destroyed only if there are no more references to
it. We implemented reference counting in TXDA and
results of the speed comparison are shown on Fig. 3. Our
results lie on the axis (execution time < 1.e-11) and do
not depend on the vector length.

3 MULTIPLICATION
It is natural to use a multiplication table for

implementation of multiplication of DA vectors. After
studying literature we concluded that using
lexicographically graded multiplication tables, as described
by Alex Dragt (Ref.[9]) would be advantageous. An
ungraded multiplication table is obtained by looping
through the index of the first factor (external loop) with
the internal loop running through the index of the second
factor. For each pair of indices there is an integer that
corresponds to the product index to which this coefficient
product contributes. If there is no such index (because
the product exceeds the order of the DA) the row is left
out of the table.

 Table 1: Multiplication table: product index (ip) for given
indices (if1, if2) of the factors.

ip if1 if2

1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0 9

10 0 10
11 0 11
12 0 12
13 0 13
14 0 14
15 0 15
16 0 16
17 0 17
18 0 18
19 0 19

8 2 3
11 2 4
13 2 5
14 2 6

DA addit ion: a = b+ b

0.00E+ 00

1.00E- 03

2.00E- 03

3.00E- 03

4.00E- 03

5.00E- 03

6.00E- 03

7.00E- 03

8.00E- 03

0 1000 2000 3000 4000 5000
l engt

C
P

U

s
e

c
s

TXDA

ZLIB

Figure. 2: Comparison of the execution time
of addition in ZLIB and TXDA (DAV). The
results are obtained on an SGI/Indy using the
KCC compiler.

DA assignment: a=b

0.00E+00

2 .00E- 04

4 .00E- 04

6 .00E- 04

8 .00E- 04

1 .00E- 03

1 .20E- 03

1 .40E- 03

0 1000 2 000 3 000 4000 5000

l eng t

C
P

U

ti
m

e

TXDA

ZLIB

LEGO

Figure 3: Comparison of the execution time of
assignment in ZLIB and TXDA (DAV) versus
vector length. The results are obtained on
SGI/Indy using the KCC compiler.

1237

16 2 7
17 2 8
18 2 9

12 3 4
14 3 5
15 3 6
17 3 7
18 3 8
19 3 9

0 0 0
4 1 1
7 2 2
9 3 3

 Table 1. Multiplication table giving product index (ip) for
given indices (if1, if2) of the factors.

 Table 1 shows a part of the table for three-dimensional,
order-3 DA vectors, where ip is the index of the product,
if1 is the index of the first factor, and if2 is the index of
the second factor. In the above table we have shown only
the entries with if1 ≤ if2. We found that we obtained
substantially better performance by breaking our table up
into the subgroupings shown above. For the asymmetric
parts of the table, if1 ≠ if2, we used only the above
loops and added in the other terms with the same lookup,
i.e., c[ip] += a[if1]*b[if2]+a[if2]*b[if1]. Then we add the
symmetric parts. For each of these subtables one is
simply stepping through the second index, and the first
index is held constant. Hence, the only lookup is that of
the product coefficient index. Indeed, for parts of the
table, where if1=0, even the product index need only be
incremented, not lookup up each time. Ultimately we
implemented this in very efficient pointer arithmetic.
This was implemented and gave us an increase in speed of
a factor of 2-8 over existing C++ libraries (see Fig. 4).
For tests we used dimension 6 and order up to 12.

2 CONCLUSION
 We created a prototype of DA library which combines

benefits of object oriented approach (written in C++) with
the efficiency of procedural languages.

REFERENCES
[1] M. Berz, "Differential algebraic Description of Beam

Dynamics to very High Order," Particle Accelerators,
24, 109 (1989).

[2] M. Berz, “Differential algebraic Approach of Normal
Form Theory,” Inst. Phys. Conf. Ser. No 131 (paper
presented at Int. Workshop Nonlinear Problems in
Accelerator Phys. Berlin, 1992.

[3] M. Berz, COSY INFINITY version 7 Manual,
MSUCL-977 (1996), Michigan State University,
East Lansing, MI 48824;
http://www.beamtheory.nscl.edu/cosy/.

[4] A. Dragt et. al , “MaryLie 3.0 User’s Manual,”
University of Maryland Physics Department, 1994.

[5] L. Michelotti, “MXYZPTLK and BEAMLINE: C++
Objects for Beam Physics,” AIP Conf. Proc. No. 255
(Proc. Advanced Beam Dynamics Workshop on
Effects of Errors in Accelerators, their Diagnosis and
Correction, Corpus Christi, Texas, 1992).

[6] N. Malitsky, A. Reshetov and Y. Yan, “ZLIB++:
Object Oriented Numerical Library for differential
algebra,” preprint SSCL-659, 1994.

[7] Y. Cai, M. Donald, J. Irwin, Y. Yan, “Lego: A
Modular Accelerator Designer Code,”SLAC-7642,
August 1997.

[8] T. Veldhuizen, "Expression Templates," C++
Report, v. 7 No. 5 June 1995, pp. 26-31.

{9] A. Dragt, M Venturini, “Design of Optimal
Truncated Power Series Algebra. Routines: II.
Computing Sums and Ordinary and Lie Products of
Polynomials Usong Monomial Indexing or Linked
Lists,” University of Maryland, September 1996
(Draft).

DA multipl icat ion

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

0.0E+00 1.0E+05 2.0E+05 3.0E+05 4.0E+05 5.0E+05

doubl e mu ltip lica tions

C
P

U
 t

im
e

LEGO

ZLIB

TXDA

Figure 4: DA multiplication time for DA
versus the number of primitive multiplications
of real numbers.

1238

