
STATUS OF MAPA (MODULAR ACCELERATOR PHYSICS ANALYSIS)
AND THE TECH-X OBJECT-ORIENTED ACCELERATOR LIBRARY *

J.R. Cary,a S. Shasharina and D.L. Bruhwiler
Tech-X Corporation

Boulder, CO 80303, USA

a) Also, University of Colorado, Boulder, 80309-0390, USA.

Abstract

The MAPA code is a fully interactive accelerator
modeling and design tool consisting of a GUI and two
object-oriented C++ libraries: a general library suitable
for treatment of any dynamical system, and an accelerator
library including many element types plus an accelerator
class. The accelerator library inherits directly from the
TxDataSet library, which uses associative arrays to store
defining parameters or strings and make them accessible
by name. The GUI can access this data in a general way,
allowing the user to invoke a window displaying all
relevant parameters for a particular element type or for
the accelerator class, with the option to change those
parameters. A TxTransferMap object can advance an
arbitrary number of dynamical variables through an
arbitrary mapping. The accelerator class inherits this
capability and overloads the relevant functions to advance
the phase space variables of a charged particle through a
string of elements. Among other things, the GUI makes
phase space plots and finds fixed points of the map. We
discuss the object hierarchy of the two libraries and use of
the code.

1 INTRODUCTION
A user-friendly accelerator analysis and design tool

would permit accelerator physicists to become involved
in accelerator projects more rapidly. Tech-X Corporation
has been developing such a tool under the auspices of the
DOE Small Business Innovation Research Program.
Currently, our application reads files in SIF format,
permits modification of the description data through a
Graphical User Interface, and subsequent writing of the
data. The currently implemented analysis tools include
geometrical survey, dispersion and Twiss parameter plots,
and dynamic aperture analysis.

Mapa makes heavy use of utility classes in the Tech-X
Standard library, libtxstd.a. This library has containers,
strings, formulas, and linear algebra. Built upon this class
library is libtxid.a, the Tech-X identifier and dynamical
systems library. The TxID classes define intefaces for
data holders and advancing arrays of real numbers
through a dynamical map. Next comes libtxac.a, the
Tech-X accelerator modeling library, which is built on
top of the TxID library. Our accelerator modeling library
has two basic classes, Element and Accelerator. In this

library are also a number of analysis methods, which are
implemented through a Visitor pattern.

These libraries are available under the terms of the
GNU public license. They can be downloaded from
www.techxhome.com. HTML documentation for our
classes showing the hierarchy and describing our methods
is at our website. We welcome input, suggestions for
modification, and collaborations. These libraries make
extensive use of many features of the C++ standard,
including member templates and the Standard Template
Library, so they compile on only those compilers
supporting those features. At present these include the
Kuck and Associates Compiler[1] and the egcs
compiler.[2]

2 MAPA CAPABILITIES
Mapa presents a Graphical User Interface for

accelerator modeling. This interface allows the user to
read, set, and store data. The interface permits interactive
plotting of the geometry, the Twiss parameters, the first
and second order dispersions, and the dynamic aperture.

2.1 Reading and writing accelerator
description data

MAPA reads data from and writes data to files in the
Standard Interchange Format. It parses almost all of the
features of MAD-8 files. This includes formulas, the
standard descriptors (e.g., L, K1, TILT, etc.), and the
inclusion in LINE hierarchies. The remaining feature to
be installed is to parse “negative” elements, (reversed
LINE’s, time-reversed magnets). It writes out this data to
files also, but at present it writes out only the formula
evaluations, not the formulas themselves.

2.2 Changing accelerator and element data

Accelerator and element data are changed through GUI
interfaces. Below is shown the interface for changing the
data of an element. At the left side of the window are the
“available elements,” those that have been defined and
had parameters set. Clicking the modify button brings up
the interface on the right, a series of text boxes that
permit users to change the values. Per usual GUI
applications, the user need not remember the names of
the data that he/she can change.

1174

Figure 1: Element modification interface
At present elements have arbitrary length vectors of

named integer, real, and string scalars. The GUI has
been built to change this data structure. Our plans
include adding input of formulas and named vectors of
integer, real, and string scalars to more conveniently
handle, e.g., multipole strengths. Because, as we
describe later, all elements and the accelerator derive
from standard data classes, the amount of code to write
these interfaces is minimized.

2.3 Scalable analyses

Our “scalable” analyses calculate arrays of real
valued data that are then plotted. These currently
include the first- and second-order dispersion, the
Twiss parameters, and the physical geometry. The
data is plotted in its own window. The user is able to
configure the plot interactively, zooming in or out to
examine parts of the accelerator.

Figure 2: Surface of section showing dynamic aperture

2.4 Nonscalable analyses

We provide two “nonscalable” analysis, those for
which the data is stored in pixel format. These
analyses are both phase-space based. The first is a

surface of section that gives a visual representation of
the dynamic aperture. Secondly we have a “LifeTime”
plot that shows chromatically the lifetime of various
initial conditions in a circular accelerator.

3 TXSTD, THE TECH-X STANDARD
LIBRARY

The TxSTD library (libtxstd.a) contains a number of
utility classes, such as those for tensors, linear algebra,
formulas, containers, and strings. The tensor and linear
algebra libraries are templated over type and reference
counted for flexibility and minimization of copying
operations. Through template instantiation we provide
libraries for both real and complex variables. More
complex matrices, such as matrices over differential
algebras, are trivially added.

Our TxFormula and TxFunction classes provide the
implementation for parsing of formulas that may
contain functions. The TxFunction class is extensible
to add new functions of one variable. Currently the
elementary functions are implemented.

We implemented containers and strings long ago,
before wide availability of compilers that conformed to
the current C++ standard and could handle the
Standard Template Library. We are now slowly
changing out these containers and string’s as we now
require compilers that implement the C++ standard.

4 TXID, THE IDENTIFIER AND
DYNAMICAL SYSTEM LIBRARY

The library, txid.a, provides a base of classes for file
I/O, data holding, dynamical systems and combinations
of these items. The TxID class has the basics of
identifiers and I/O. TxDataSet derives from TxID and
adds data (int’s, double’s, and string’s) that can be
accessed by a name. TxMap contains the basics of a

1175

dynamical map. TxTransferMap adds limits of
validity, variable names, etc. The combination of
TxMap and TxDataSet gives a TxDataAndMap, which
simply combines the capabilities of these classes.
Similarly, TxTransferMap and TxDataSet are
combined in the class, TxDataTransMap.

Another part of this library is classes that hold data
for plotting or output, typically array data. The base
class TxPlotData has basic functionality. The derived
class TxLinePlotData adds the ability to define lines
that should be plotted. These are defined internally
through TxDataSeries and TxLinePlotDesc objects.

5 TXAC, THE ACCELERATOR AND
ELEMENT MODELING LIBRARY

The Element class inherits its geometry from a mixin
class, ElemGeometry, and it inherits its data and
dynamical systems interfaces from the TxDataAndMap
class, which is part of libtxid.a. A Beamline is derived
from the element class. The Accelerator class contains
a single element, which may be a Beamline and so
ultimately have many elements.

Our hierarchy is shown below. Derived from
Element are ThinElements, for which the map is
explicitly known, and Steppable’s, through which the
particles must be integrated. In either case the
Advance method, for integrating particles through an
element, must be present. Having this in Element
simplifies our “Visitor” classes, which perform various
analyses.

ElemGeometry & TxDataAndMap
Element

Beamline
Drift
ThinElement

VerticalMonitor
VerticalKicker
ThnCavity
Marker
Multipole
Monitor
Kicker
HorizontalMonitor
HorizontalKicker

Steppable
TxQuad2
ThkSextupole
ThkOctupole
Quad
Bend

ElementImg
SimpElemImg
BeamlineImg

TxDispPlotVisitor
TxSurveyVisitor
TxTwissPlotVisitor

Our *Img classes contain the text images that can be
used to define an element. These include variable
names, numbers, and formulas.

Our *Visitor classes contain the analysis methods.
The developer replaces the “MoreData” method of
these classes to fill them with data. The GUI is then
able to extract that data and plot it without knowing
what it represents. This greatly simplifies addition of
new GUI analyses to the MAPA application.

6 EXTENSIBILITY
We have achieved extensibility in MAPA through

extensive use of the “Interface Pattern” and our
TxCreator mechanism for creating a global registry of
creatable elements. Thus, a user can define a new
accelerator element and implement it in our application
through a single line of code in the file
TxacElements.C. Because all data is named and stored
in name-associative arrays, the GUI code need be
written only once, and then it is reused for all elements
and even the accelerator itself. We use similar
techniques for the various analysis classes. One can
add to the plotting capability simply by creating a new
derived class that fills in the data as requested by
TxPlotData. Installation of this into the Mapa
application involves a single line of code in the file
TxPlotTrols.C.

7 FUTURE DIRECTIONS
With the basic structure implemented, we will

continue to add features that can be easily derived from
our existing structure. Depending on funding we
intend to add design features to permit finding
parameters to give certain desired operating values.
We also intend to develop a more general class library
interface that will allow insertion of other C++ class
libraries (e.g., LEGO, BEAMLINE, MAD-9) into our
GUI application.

8 SUMMARY AND CONCLUSION
Mapa is an extensible, object oriented accelerator

modeling application with a graphical user interface. It
has the basic modeling capabilities. It can be easily
extended for additional types of studies.

The Tech-X accelerator class libraries have extensive
capability in modeling, parsing, and data generation.
They can easily be extended for additional types of
elements and additional analyses.

REFERENCES

[1] www.kai.com.
[2] www.cygnus.com.

1176

