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Abstract

The report describes the calculational technique of
beam emittance in the electron storage ring with due
account of betatron and synchrotron oscillations. The
formulas for estimating the electron distribution function
in the 4-D phase space are derived. The beam emittance is
calculated for the case when frequencies of betatron and
synchrotron oscillations are of the same order. It is shown
that the emittance calculated by the present formulas
differs from that given by Sands.

1  INTRODUCTION
The tendency of evolution in electron storage rings to

RF systems with a higher frequency and amplitude of
accelerating voltage is now observed. As a result, the
synchrotron oscillation frequency increases. Thus, there is
a problem on the boundaries of applicability of
approximations, which are supposed for   calculation of
equilibrium sizes of an electron beam in storage rings. A
main approximation, which is used in theory, is the
submission of movement in a horizontal plane as a
superposition fast (betatron) of oscillations which were
not connected to a modification of energy of particles, and
slow (synchrotron) of oscillations. This approximation is
based on the supposition, that the frequency of
synchrotron oscillations has significantly less frequency of
betatron oscillations. It is possible to assume, that for
higher frequency of synchrotron oscillations this
approximation can be of no use.

2  MATHEMATICAL ALGORITHM
The present work is devoted to development of

mathematical algorithm for calculation of stored beam
sizes in a horizontal plane taking into account of betatron
and synchrotron of oscillations  coupling.

The equation of electron motion in the storage ring can
be written as [1]
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x2 - deviation of an electron from equilibrium orbit in
a horizontal plane;

x3- relative deviation of energy from equilibrium
values;

x4 - deviation from equilibrium value of a phase,
θ - azimuth coordinate.
The matrix A describes an operation of

electromagnetic fields of the storage ring in a linear
approximation taking into account the synchrotron
radiation. The matrix A is periodic, A(θ+2π)  = A(θ). Yl -
- component of a force vector describing an operation of
radiation quantum fluctuations. Let's take into account in
(1) only the most essential component of fluctuations,
namely fluctuation of energy  Y3, by putting
Y1=Y2=Y4=0.

Using the results of work [2], it is possible to write a
stationary distribution function of particles in space of
components of the vector x(x1,x2,x3,x4).
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here �−
OP*  -  inverse matrix of OP* . The matrix OP*

are periodic solutions of the matrix equation:
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The sign “+” - means a transposition, δlm - Kronecker
symbol, σ1=σ2=σ4=0. The value σ3 - intensity of a noise
is calculated in a number of articles [1, 3, 4];
σ3(θ+2π)=σ(θ).

The performances of a stationary cumulative
distribution function, moment of the 2-nd order PO[[ ,

are determined by the formulas [2]
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The existence of limits in (4) assumes availability of
an asymptotic stability of solutions of the equation (1) for
Yl=0.

The matrix of solutions of the equation (3) is
symmetrical POOP ** = . From 16 equations (3) for OP*

10 equations are independent for G11 , G22, G33,  G44, G12,
G13, G14, G11 ,, G24, G34. For convenience we shall
introduce labels: G11 = y1, G22 = y2, G33 = y3, G44 = y4 , G12

= y5, G13 = y6, G14= y7, G23 = y8, G24 = y9, G34 = y10.
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According to the restrictions introduced for
components Yl and introduced new labels, distinct from
zero will be only magnitude σ3.

The solution of the equation (5) can be presented as
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here the functions Zik are elements of  matriciant Z

equation, composed from solutions, (5) for
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( ) ( )θκθσ �
� ∝ ,  κ - curvature of equilibrium orbit. D3k  -

cofactor of k - element in 3 line of matriciant Z.
Matriciant of solutions Z for the equation (5) it is possible
to calculate as follows. According to [5] general solutions
of the equation (5) for σm=0 looks like

+
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here M  - matriciant of solutions of the equation (1) for
Yl = 0, C  - symmetrical constant matrix POOP && = .

From (7) it is possible to choose necessary elements and
to make matriciant Z for the equations (5). By virtue of an
asymptotic stability of solutions of the equation (1) for Yl
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For determination of limits in (8) it is necessary to
calculate elements of  matriciant M   using the entry of
solutions in the Floquet-form. It will allow to integrate in
(8) with the help of expansions of periodic Floquet-
functions, included in Zik and ϕk  in Fourier series.

Let's formulate main stages of calculations:
1. With the help of programs "DECA" [6] are

calculated matriciant M  and Floquet-parameters
( 224,3112,1 , ωµωµ iIiI ±=±= ).

2. There are sixteen Floquet-functions must be found
through elements of matriciant M . The inverse problem is
decided the matriciant elements are expressed using
Floquet-functions.

3. Elements of matriciant Z are calculated with the
help of expressions (7) the cofactor of k-th element from
the third line of a matriciant Z are determined.

4. The cofactor of k-th element from third line of a
matriciant  Z  are determined.

5. The periodic functions which are included in Zik and
ϕk are decomposed in Fourier series.

6. The integration ∫
θ

ϕ
0

k  is made.

7. The calculation of the sums ( ) ττϕ
θ

dz k
k
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passage to the limit for ∞→θ  are made.

3  CONCLUSION
 The mathematical algorithm for calculation of stored

beam sizes in a horizontal plane is developed taking into
account of betatron and synchrotron of oscillations
coupling. It will be used for the modelling of beam
dynamics in new storage rings which have large
synchrotron oscillation frequency with DeCA code.
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