
THE CONTROL SYSTEM FOR THE ACCELERATOR OF ANKA
B. Jeram, M. Juras, K. Kenda, T. Milharcic, G. Mavric, M. Peternel, U. Platise, M. Plesko, R.

Sabjan, M. Smolej, G. Tkacik,
J. Stefan Institute, Ljubljana, Slovenia, e-mail: mark.plesko@ijs.si

H. Schieler, Forschungszentrum Karlsruhe, Germany, e-mail schieler@anka.fzk.de

Abstract

ANKA[1] is a 2.5 GeV synchrotron radiation light source
being built in Karlsruhe, Germany. The control system for
the accelerator is based on the three-tier standard model
architecture. However, modern products based on
standards in distributed objects and networking are
applied in addition to low-cost hardware including PCs.
This keeps development costs at a minimum. Instead of
employing VME, we use the LonWorks field bus network
with intelligent nodes and standard I/O modules to
connect the individual devices directly to PCs that run
device servers under Windows NT. Those PCs act as
WWW servers for data transmission, application
distribution and documentation retrieval. Applications in
the control room run also on Windows NT hosts as
WWW clients. However, they could run in any Web-
browser on any platform, because all operator control is
performed through a Web-browser with Java
applets/applications. The communication with the control
system data servers is done through CORBA. CORBA
objects are wrapped in JavaBeans which are simply
connected with commercial data-manipulation and
visualization Beans into full-fledged applications or
applets.

1 INTRODUCTION

We want to have a control system that will be as
homogeneous as possible from the operator’s point of
view. The CS is designed to use existing intranet/internet
infrastructure and web technologies such as
HTML/HTTP, web browsers/servers with Java and
CORBA/IIOP [2]. This decision was made because
nowadays a large proportion of people are familiar with
web browsers and because the WWW standards provide
equal user interface to any information regardless of its
type.

The architecture of the CS is based on the Standard
model. Essentially the same thing is called a three-tier
architecture in the world of databases:
1. the visualization layer with control GUI;
2. the process control layer with accelerator objects;
3. the fieldbus layer with devices.

2 THE VISUALIZATION LAYER

Every operator’s interaction with the control system will
go through a web browser:
• control GUI (Java / CORBA)
• logbook forms (Java / JavaScript / CGI)
• help, documentation (HTML)

• notification (e-mail)
We have chosen Java because it is a modern object

oriented programming language, it has well defined data
types and API (Application Programming Interface), it
allows easy use of graphic widgets, threads and other
system tools without having to know the specifics of a
given platform. Java is also an interpreted language, so it
is a little slower than compiled languages like C++, but
we found out that by using JIT (Just-In-Time) compilers
it is fast enough for our needs.

The applications will be build around Sun's
JavaBeans[3] model. A JavaBean is a component that can
be manipulated in a visual builder environment: Beans
can be graphically arranged and connections between
them established. The latter include, for example, event-
to-method connections, where the event in one Bean
triggers the method in the other; property-to-method
connections, where a change in property triggers the
method, property-to-property connections and so on. Such
environments enable the programmer to build an
application without typing a single line of code.

Any accelerator application is composed of two types
of Beans:
• visual Beans (GUI objects, like windows, buttons,

gauges, charts and the like);
• device Beans.

A device Bean encapsulates all remote calls from the
client to a device server of the process control layer. Thus
the network is invisible to the user of device Beans. Each
device (which is presented in the control system as a
remote object - see next section) has a corresponding
device Bean. Tasks of a device Bean include opening the
connection and performing the function calls on remote
objects; report and manage all errors/exceptions/timeouts
arising from network communication, provide handles for
asynchronous messages, etc.

Visual beans will mostly be commercial products.
Therefore the work done in building a control panel for a
device will consist mostly of connecting the appropriate
device Bean and commercial visual beans in a visual
builder. The developing time is low, of the order of hours
for a panel, or one or two days for a full-fledged
application that instantiates and interconnect many device
Beans - even of different devices.

3 THE PROCESS CONTROL LAYER

Controlled devices are modeled as objects[4] residing on
device servers that run on the process control layer. The
device server are implemented along the guidelines of the

1691

TACO system[5]. The objects are exposed to remote
clients through their interface only, using the CORBA
architecture[6]. CORBA automatically generates the
appropriate communication libraries. There is no need to
write other API libraries. We have chosen CORBA for
this reason and due to its platform and language
independence[7].

The need for speed and the necessity to
communicate with external drivers require the servers to
be written in C++. In the future, when we find appropriate
Java development tools, we might write device servers in
Java using JNI (Java Native Interface) and a native code
compiler. The result will be only one platform and
development tool, which will greatly simplify the
maintenance involved.

The communication between clients and devices is
completely asynchronous. Server’s responses to client’s
requests are made via callbacks. There is also a possibility
of using ”repeated callbacks” – called monitors. The idea
is that clients are able to register with servers about which
data they require and how frequently it has to be obtained.

The server is independent of the underlying fieldbus.
Therefore our Web-based concept can be used in
conjunction with any other control system, e.g. EPICS,
etc.

Since the device Bean encapsulates all the
communication details with the server, it can easily be
rewritten should we want to use a different interface
instead of CORBA, with no modifications to the rest of
the client code. In that way that we can replace our
current ORB with any other ORB or even with an entirely
different architecture, like Sun’s RMI[8], Microsoft’s
DCOM[9] or pure sockets.

4 DATABASES

Our design of the control system involves three databases:
• static database that stores configuration parameters

like names, constants, calibration coefficients,
attributes, alarm levels, fieldbus addresses, etc.

• snap-shot database that stores the state (i.e. all
settings) of the machine

• historic database that logs data over long periods of
time

The main idea of three three-tier architecture is that
clients don’t access the database directly but through the
CORBA server. Each object is responsible to provide data
that belongs to it. The CORBA objects therefore
implement commands that return all data from the static
database.

Long-term history data. are stored into a relational
database and retrieved off-line through dedicated
applications.

 Also the snap-shot database is used and managed
through a dedicated application. We are still investigating
whether we should use a relational or an object oriented
database for the snap-shot data.

5 THE FIELDBUS LAYER

Due to the relatively modest requirements of ANKA, we
have found[10] that instead of having dumb devices and a
strong middle layer, we bring intelligence to the devices
and avoid the complexity of VME. This is possible also
because most equipment has already some intelligent
control. It is just necessary to combine them with a proper
fieldbus.

Since a light source is a relatively static machine, there
is no need for hard real-time control. Therefore we have
decided to opt for the LonWorks[11] fieldbus, because it
offers a complete network system in hardware and
software in a single micro-controller (the Neuron chip)
and eliminates any need for network programming.

The software on the Neuron chips implements quite
complex functions such as complete magnet power
supply control including state machine and alarms and
synchronous ramping of several power supplies where
their current is increased bit-by-bit in 1 ms steps.

After a careful analysis of all I/O requirements of
ANKA, three I/O boards were designed that cover all
cases. All boards are made in SMD technology, size
160mm x 100mm (Europa format), 5V supply voltage,
with I/O connectors at the back and the LonWorks
connector at the front.

One board, called Ariadne, is just a serial interface that
is used to connect commercial instruments to the fieldbus.
The other two boards are more specific:
Zeus
The board contains one DAC, four multiplexed ADC
inputs, eight digital inputs and eight digital outputs, a
function generator and a trigger input. The interface to the
power supply is pin-compatible to the BESSY ADA16
board. The DAC and the ADC have a resolution of 16 bits
over the interval of 0-10V or ±10V and have differential
outputs and inputs, respectively. The function generator
can set the DAC after a predefined curve with a speed of
0.1 ms per step. The ADC measures up to 1000
measurements per second per channel.
Hera
The board has 24 digital inputs 8 digital input/outputs (a
channel can be either an input or an output) and 8 solid
state relay digital outputs. The solid state relays can
switch currents up to 1.5 Amperes. All channels are
circuited as open collectors. The inputs have over-voltage
protection with a Zener diode and a varistor. The inputs
are read out directly and multiplexed into a 100 kHz
counter with a resolution of 16 bits. The selection of
channels and the control of the multiplexer is done by the
Neuron chip.

6 PERFORMANCE

Old analog control systems allowed to control parameters
smoothly by the use of knobs from the control room.
Most of the current control systems don’t support this,
because of slow network communications. This is
changing now as even the object oriented CORBA takes

1692

only few milliseconds to execute a remote method. For
the operator to get an analog feel, about 25 set/read pairs
are necessary, just like on a TV screen, i.e. a turn-around
time of 50 ms or less.

Our measurements on the complete control
system[2,10], which starts with a Java application at the
operator console, communicates through CORBA with
the server, which in turn uses LonWorks to communicate
with the Neuron chip, show a turn-around time of 22 to
40 ms. If we compare this result with the result for Java -
CORBA communication, approx. 4ms, we find that Java
is indeed fast enough for our control system.

7 CONCLUSIONS

The analysis of the subject and the working prototype[12]
clearly demonstrate that the design of a control system
based on Web-technology and commercial fieldbus
solutions is a good one and ripe for deployment. More
important, though, is the global perspective: such
technologies are (or at least will be) widely supported in
the near future, and the investment in them seems like a
worthwhile idea. The important aspects of
communication, such as security, database access,
transparent method invocations etc. are already precisely
defined by the existing standards and have their
implementations provided by the software vendors; the
only remaining thing that needs to be done is to pick the
correct pieces of software and integrate it in a reliable,
reusable and easy-to-maintain manner.

8 ACKNOWLEDGMENTS

We sincerely thank Steve Hunt for his on-going help and
for believing in our ideas.

9. REFERENCES
[1] D. Einfeld et al., ANKA - Status of the 2.5 GeV

Synchrotron Light Source at Forschungszentrum
Karlsruhe, Proc. PAC 97, Vancouver 1997.

[2] B. Jeram et al., A Control System Based on WWW-
Technologies, Proc. ICALEPS97, Beijing 1997

[3] http://splash.javasoft.com/beans/WhitePaper.html
[4] M.Plesko, The CORBA IDL Interface for

Accelerator Control, this conference.
[5] A. Götz et al., TACO: An object oriented system for

PC's running Linux, Windows/NT, OS-9, LynxOS or
VxWorks,,PCs and Particle Accelerator Control
(PCaPAC) Workshop, DESY Hamburg, 1996.

[6] http://www.omg.org/
[7] S. Hunt, B. Jeram, M. Plesko, The Implementation of

the OO Control System API with CORBA, Proc.
ICALEPS97, Beijing 1997

[8] http://www.microsoft.com/activex/dcom-f.htm
[9] http://www.javasoft.com/products/jdk/rmi/index.html
[10]B. Jeram, G. Mavric, M. Plesko, M. Smolej,

Experience with LonWorks as a Fieldbus for the
Light Source ANKA, Proc. ICALEPS97, Beijing
1997

[11]The ‘95-’96 Echelon LonWorks Product Databook,
Echelon Corporation, 1995.

[12]see http://kgb.ijs.si

1693

