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Abstract

The SOLEIL storage ring sextupole is a multipurpose
magnet. In addition to its primary function as a sextupole,
it provides horizontal and vertical dipolar fields and skew
quadrupolar field using auxiliary sets of coils. In this
paper, we will discuss the application of Halbach’s
perturbation theory to calculate the required dipolar
excitation. We will also show the effectiveness of this
theory in determining the extra multipolar components
introduced by the additional fields and their strengths.
Finally, we will show the good agreement between these
results and those provided by the OPERA code.

1. INTRODUCTION

In a storage ring, the use of sextupoles is essential both
for correcting chromaticity and reducing nonlinearities.
There are 112 sextupoles provided for the storage ring of
the SOLEIL project. In order to save space, the dipolar
correctors for closed orbit correction and skew
quadrupoles for betatron coupling correction are planned
to be inserted as auxiliary coils inside the sextupole. The
aim of this paper is to present the results of the analysis of
this multipurpose sextupole using an analytical approach
based on a perturbation theory for iron-dominated
magnets developed by K. Halbach [1] and to compare
these results with those obtained using the OPERA-2D
code [2].

Three auxiliary coils (vertical and horizontal steering
and skew quadrupole) will create additional fields
superimposed to the main sextupole field. This can induce
a loss of sextupole symmetry and introduce further
multipoles. Systematic multipoles of the sextupole can to
a great extent be reduced by changes in design details,
however the multipole values due to the auxiliary coils are
fixed and cannot be improved. If their effect on dynamic
aperture is unacceptable, the only alternative is to remove
them from the sextupole. Halbach’s perturbation theory is
a good tool to investigate this kind of problem as already
pointed out by S. Marks [3].

Fig. 1 shows a cross sectional view of the SOLEIL
storage ring sextupole and Table 1 gives its main
characteristics.

Fig. 1. Sextupole cross section.

In order to avoid mechanical interference with 1° and
4° beamlines, the yoke width had to be minimized on one
side in the median plane. For this purpose, the yoke
presents a notch in the median plane. Initially this was
repeated 6 times to maintain a 6th-order symmetry, but
calculations showed that it was possible to suppress half
of the notches with a neglectable effect. This reduction to
3rd-order symmetry increases mechanical stiffness. Then,
each elementary steel plate has two poles whose sizes
permit installation of main and correcting coils.

A supplementary mechanical constraint is the vacuum
chamber which imposes a 19 mm minimal distance
between two poles. This will indeed constitute a limitation
for the 30-pole component optimization.
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Table 1. sextupole main characteristics.

Max. field strength 320 T/m2

Bore diameter / Yoke length 78 10-3 m / 0.16 m
Good field region 30 10-3 m
Sextupole ampere-turns 5 069
Horizontal steering 0.0275 T
Vertical steering 0.0275 T
Skew quadrupole 32 10-2 T/m

2. OUTLINE OF HALBACH’S
PERTURBATION THEORY

The first order perturbation effects in iron-dominated
2-D symmetrical magnets are expressed in terms of
generation or changes in multipole coefficients [1].

For a symmetric 2N-pole magnet, the potential is :
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Where Cn are the multipole coefficients. The term CN is
the fundamental and the odd multiples are the allowed
harmonics. The comparison between the field components
Hn and HN is written as a function of these coefficients :
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For a particular perturbation, the theory provides the
sensitivity of the coefficients ∆Cn (o) for a reference pole
centered in the horizontal axis. Numerical values are
given in Halbach’s paper as normalised coefficients
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The effect of this same perturbation applied to a pole

whose symmetry axis is rotated by α is described by
∆ Cn (α) and is obtained as follows :
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The equation (2) can then be re-written as :
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3. HORIZONTAL DIPOLAR
CORRECTION

This requires a vertical dipolar field, which can be
obtained by using the six dipolar coils shown in Fig. 1.
The coils corresponding to the poles 1, 2, 3 are of
opposite polarity to those of 4, 5, and 6. From symmetry,
we will give the same current I1 to the coils 1, 3, 4 and 6
and the same current I2 to the coils 2 and 5. As expected,
these two dipolar excitations will create two unwanted
sextupolar components and modify the main sextupolar
excitation. These two sextupoles are respectively

proportional to the pole angular positions as pointed out
by the equation (4) :
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Therefore it appears that in order to eliminate the
sextupolar components we must apply a current I2 twice as
high as I1.

The required values for ampere-turns can be calculated
with the use of Halbach’s perturbation coefficients. For
n = 1 (dipole) and N = 3 (sextupole), the value of the

normalised coefficient is :
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value of the strength of the perturbation ε for the
maximum value of the dipole :
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where H1 = 0.0275 T and H3 = 0.487 T.
The sextupole excitation being NI ≈ 5 069 A.t, the

ampere-turns required for dipolar horizontal correction
are then :

(NI1) = 0.0961 × 5 069 = 487 A.t (7)
(NI2) = 2 × 487 = 975 A.t

The same values were independently predicted by
OPERA-2D calculations.

Other multipoles generated can not be compensated
and their effect on beam dynamics must be taken into
account. Table 2 sums up their relative strengths
calculated at z = 30 mm, using both perturbation theory
and OPERA-2D code.

Table 2. Multipoles generated by horizontal dipolar
correction.

n 5 7 11
Hn/HN (theory) 2.4 10-2 2.7 10-3 -6.9 10-4

Hn/HN (OPERA-2D) 2.6 10-2 3.3 10-3 -5.4 10-4

The agreement between the two calculations is very
good.

4. VERTICAL DIPOLAR CORRECTION

In this case a horizontal dipolar field is needed. As
shown in Fig. 1, this can be obtained by using four dipolar
coils driven by the same current I3. The coils of the poles
1 and 6 are of opposite polarity to those of 3 and 4. Coils
2 and 5 are not used in this case.
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Using the same calculations as before, we determine
the corresponding value for the perturbation strength,
ε = 0.167. The ampere-turns are then :

NI3 = 0.167 × 5 069 = 850 A.t.
The strengths of the multipoles generated by this

horizontal dipolar field are summarized in Table 3.

Table 3. Multipoles generated by vertical dipolar
correction.

n 5 7 11
Hn/HN (theory) -2.4 10-2 2.7 10-3 6.9 10-4

Hn/HN (OPERA-2D) -2.5 10-2 2.8 10-3 7.6 10-4

Once again the agreement is very good.

5. SKEW QUADRUPOLE

We can produce a skew quadrupole by using two coils
on poles 2 and 5 with the same polarity, driven by the
same current I4. In this case n = 2 and N = 3, the
corresponding normalised perturbation coefficient is
0.156. The maximum value required for the skew
quadrupole was determined to be 0.32 T/m which
corresponds to a peak field of 0.0125 T. The factor

∑
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the perturbation strength is ε = 0.082. The needed ampere-
turns are then NI4 = 0.082 × 5 069 = 416 A.t.

The non-zero values of the multipoles generated by
this field are given in Table 4.

Table 4. Multipoles generated by skew quadrupole.

n 4 8 10
Hn/HN (theory) 1.7 10-2 -4.7 10-4 -2.4 10-4

Hn/HN (OPERA-2D) 1.7 10-2 -4.8 10-4 -2.6 10-4

The agreement is as good as in previous cases.

6. POLE DESIGN/FEM CALCULATIONS
WITH OPERA 2D CODE

Because of the presence of dipolar and skew
quadrupolar correctors, two 2D models were used : a half
sextupole and an entire one.

Poles were widened as much as possible to limit
saturation. OPERA-2D results in Tables 2, 3, 4 are
obtained using finite permeability curves, although the
perturbation theory assumes µ = ∞. The closeness of
figures confirms that overall saturation is limited.

A 3-facet pole shape was chosen, as studies with cubic
shape plus shims proved not to bring much improvement.
In addition, it would be too complicated in the case of a
post-assembly machining of poles.

Optimization of systematic sextupolar components was
performed by varying the position of pole extremities
(Fig. 2). Point (xo, yo) controls the 18-pole component
while point (x1, y1) controls the 30-pole component.
Nevertheless, they are not totally independent and 30-pole
reduction is limited by the finite width of the pole.

Fig. 2. Pole profile.

It must be said that a C-shaped yoke could have been
chosen [3]. Nevertheless, such a design modifies
sextupolar field by introducing new multipolar harmonics.
Concerning horizontal steering, the C-shape introduces an
equal perturbation on each pole : thus, theoretical A-turns
balance (NI in poles 1, 3, 4, 6 and 2NI in poles 2, 5) is
altered and consequently imposes an adjustment of A-
turns in poles 2 and 5, either by means of power supplies
or by the number of turns per coil. For the sake of
standardization of coils and power supplies, this solution
was not adopted.

CONCLUSION

Horizontal and vertical dipolar corrections in addition
to skew quadrupole field are incorporated in the sextupole
magnet as auxiliary coils. The use of Halbach’s
perturbation theory has allowed to decouple the four
magnetic fields and evaluate the strength of the multipole
components. The results are in full agreement with
OPERA-2D calculations.
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