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Abstract

   This paper deals with wave properties of synchrotron
radiation (SR) generated by a relativistic particle in an
uniform magnetic field. Starting from exact solutions of
the Maxwell equations, precise analytical formulae for
the SR phases have been obtained. The ‘photography’ of
one electron resulting from the focusing of its SR on the
screen by the ideal lens, is computed. The lens aperture
effect on the optical resolution of electron beam profile
measurement by means of SR is analyzed. It is shown
that the traditionally used geometrical approach is too
crude and does not offer the best size of the lens
aperture.

1 INTRODUCTION

   Because of the wide-spread application of diverse
optical devices in SR physical experiments, it is vital to
study the wave-optical properties of SR. In particular,
the knowledge of SR wave properties is of fundamental
importance in the storage ring beam diagnostics based on
the use of radiation interference [1-7]. The SR wave
properties play a major role in conventional diagnostics
of electron beams in storage rings [8-13], where a lens is
used to focus the SR and form an image of the particle
beam. The diffraction of SR on the lens aperture restricts
the resolution of the beam profile measurement. In order
to evaluate the optical resolution of electron beam
diagnostics, the geometrical approach was used [14-16].
To estimate the depth of field errors, the SR from the
moving electron was considered, within this approach, as
the radiation from stationary long light source. In
[9,17,18] the Gaussian beam was used as a model for SR
beam. However both geometrical and Gaussian methods
seem to be enough artificial. Furthermore, the detailed
analysis demonstrates that phase distribution of SR from
one electron is very close to the phase distribution of
spherical wave was emitted by a point source, being at
rest in the laboratory frame [2,7].
   A consistent setting of the problem, in terms of wave
optics, is as follows. Let a physical device consists of the
optical parts, each has characteristics known beforehand.
It is enough to know the amplitude and phase of the SR
at every point of the device entrance window in order to
take advantage of the Helmholtz-Kirchhoff integral
theorem [19]. If so, one can calculate the radiation
intensity distribution on the device output screen. The
amplitudes of vertical and horizontal SR components are

well known and expressed in terms of second-order
modified Bessel functions. The analytical formulae for
the SR phase distributions were derived in [20].

 2  WAVE-OPTICAL PROPERTIES OF SR

    Let as consider a physical experiment with a geometry
shown in Fig. 1.

 
Fig.1: Typical layout of SR experiment. 1- electron
orbit, 2 - light filter, 3 - device entrance window, 4 - SR
pulse.
 
    Let a relativistic electron with reduced energy γ>>1
moves along its circular orbit 

r

r t( )  in a horizontal plane

XOY (the magnetic field is aligned with the vertical axis),
see Fig. 1. Then the equations of particle motion are:
r

r t R R t( ) { cos( ),= − ω  R tsin( ),ω   0}.    (1)
 Here R is the electron orbit radius and ω is the electron

angular velocity. At time t the electron is at point 
r

r t( )
of its orbit. The velocity vector is directed along a
straight line intersecting the window plane (oriented
normally to the Y-axis) at a point with abscissa x(t).

 x(t) = R + Dtg t( )ω  - 
R

tcos( )ω
,                              (2)

where D is a distance from the origin of coordinate to the
device entrance window. This relation can be

reciprocated with respect to t: x=x(t) ⇒  t=t xp ( ) . If

D>R, the quantity t xp ( )   is determined from relation
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Thus, t xp ( )  is the moment, when the particle located at
r

U W [
S

� � ��  points to {x, D, 0} of the device input window.

The SR spectrum is determined by the Fourier
transformation of the electric field:
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where λ  is the SR wavelength. As a result we have [20]:
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where e is the electron charge, θ  is the vertical angle of

the observation point, λ
F

 is the SR critical wavelength,

K 1 3/  and K 2 3/  are the second-order modified Bessel

functions, ξ
λ
λ

γ θ= +F

�
� � � � �� � � .

The formulae (7) and (8) are well known expressions for
the amplitudes of SR σ- and π-components. Their phases
are constant, independent of the observation point. The
phase dependence of SR from the observation point
position is described only by the function Φ� �

r

[ . The

phase value is calculated as follows. The horizontal
coordinate x of observation points 

r

x ={x, D, z} is used

for finding the value of t xp ( )  by means of formula (3).

The found value t xp ( )  indicates the instant when the

electron points to {x, D, z}. Substituting this time value
into (1), one finds the particle position. Then formula (6)
gives the desired SR phase value. It is important to
outline that the phase difference, rather than the phase
absolute value Φ( )

r

x , has a physical sense.

   Let us clarify the physical sense of the results derived
above. Let there be an observer located in the storage
ring median plane. Curve 4 in Fig.1 presents the time
dependence of ( W [σ � � �

r

 in the absence of light filter 2.

The observer who is at the point {0, D, 0} of the entrance
window will detect the peak of this function at moment
W ' F= � . This is obvious because, at time t = 0, the
particle was at the origin of coordinates, and its velocity
vector points to this observer. If there are other observers
located at some different points A or B of this window,
they will observe a similar SR pulse. Nevertheless, these
observers will detect the signal peak at different times.
Obviously, the time detected by each observer consists of

two components. The first part t xp ( )  is the time, when

the particle was at such point of its orbit from where the
velocity vector pointed at the observer (points a or b in
Fig.1). The other part is the time of radiation propagation

from the trajectory point 
r

r t xp( ( ))  to the observation

point. As a result, the recorded time of the maximum of
function ( W [σ � � �

r

 is equal to the quantity

2π λc xΦ( ) /
r

. Thus, we have obtained a physically

sound result: the SR phase is proportional to the recorded
arrival time of the maximum of function ( W [σ � � �

r

.

 3  ‘PHOTOGRAPHY’ OF ONE ELECTRON

    Let us consider the conventional experimental layout
to measure the electron beam profile. In this case a lens
is additionally mounted crosswise to the Y - axis. This
lens is used to focus the SR and form the electron beam
image on the screen 3, Fig.1 (the lens is not shown). It is
possible, by using the SR amplitude, phase distributions
and Helmholtz-Kirchhoff integral theorem, to compute
the ‘photography’ of one electron. We will consider the
ideal lens. It means that this lens adds an extra shift in
the SR phases and does not change the radiation
amplitudes. The magnitude of this phases shift is equal
to
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� � , where F is the lens focal length,

x and z are the transverse lens coordinates. The computer
code has been written for simulations of the relativistic
electron optical image. Fig. 2 shows the computed image
for the σ-polarized SR. The simulation was made under
the following conditions. The electron beam energy is 2
GeV, electron orbit radius is 5.5 m (Daresbury SRS), SR
wavelength is 500 nm, distance from the radiation point
(origin of coordinates) to the lens is 10 m, distance from
the lens to the screen is 10 m, the lens is infinite in
transverse sizes, its focal length is 5 m.
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 Fig.2: Computed photography of one electron, ‘made’ by
the ideal lens focusses the σ-polarized SR on the screen.

 4  IMAGING RESOLUTION

    The most credible way to estimate theoretically the
resolution of the electron beam profile measurements by
SR is to compute the image of one electron under the
real experiment geometry. It is obvious that the size of
this image gives the required resolution, if the optical
magnification is equal to 1. The horizontal case has been
of our main interest here. Fig. 3 shows the normalized
horizontal profiles of the images, computed for one
electron under conditions presented above, but for the
different lens apertures. The vertical slit with 200 mm
height, but with different width, was assumed to be
placed in front of the lens (vertical size of SR spot on the
lens is 140 mm).
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Fig. 3. Horizontal profiles of one-electron images for the
different widths of vertical slit: 1 - 52 mm, 2 - 100 mm,
3- 400 mm.

   One can see that the vertical slit with width about 100
mm provides the best horizontal resolution. At least such
slit is much superior to the slit with 52 mm width. The
additional superiority of 100 mm slit is that we will have
much more SR flux as compared with 52 mm slit. But
the slit with 52 mm width is a best size slit from the
geometrical approach standpoint [11]. That is why the
geometrical approach to the optical resolution problem
does not give the best answer. One can also see from
Fig. 2, that if we will increase the width of slit (curve 3,
400 mm width), the optical resolution will degrade due
to the appearance of additional picks. That indicates on
the existence of slit with optimal parameters which
provides the best optical resolution.
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