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Abstract
Inverse Compton scattering is the classical way to measure

the electron beam polarization. Eligibility of the approach

at high energy domain has been demonstrated by LEP [1,2],

HERA [3] and SLD [4] experiments. Fast measurement of

beam polarization allows to apply the resonant depolariza-

tion technique for precise beam energy determination [5, 6].

The distinctive feature of the FCC-ee polarimeter is the reg-

istration of scattered electrons along with scattered photons.

Polarimeter is designed to measure the transverse polariza-

tion of the non-colliding pilot bunch with 1% accuracy every

second. Furthermore the same apparatus allows to measure

the beam energy, longitudinal beam polarization (if any) and

transverse beam positions/sizes at the place of installation.

INTRODUCTION
The illustration for the process of Inverse Compton Scat-

tering (ICS) is presented in Fig. 1.

Figure 1: Inverse Compton scattering: the thickness of every

arrow qualitatively reflects the energy of each particle. ω0, ε0
and ω,ε are the energies of the photon and electron in their

initial and final states correspondingly, while θγ and θe are

the scattering angles of photon and electron.

Considering an ultra-relativistic case (ε0, ε,ω � ω0) we

introduce the universal scattering parameter

u =
ω

ε
=
θe
θγ
=

ω

ε0 − ω
=
ε0 − ε
ε
, (1)

bearing in mind the energy and transverse momenta conser-

vation laws while neglecting the corresponding impacts of

initial photon. Parameter u lies within the range u ∈ [0, κ]
∗ N.Yu.Muchnoi@inp.nsk.su

and is limited from above by the longitudinal momenta con-

servation: κ is twice the initial energy of the photon in the

rest frame of the electron, expressed in units of the electron

rest energy:

κ = 4
ω0ε0

(mc2)2 = 2 × 2γ
ω0

mc2
. (2)

If the electron-photon interaction is not head on, the angle

of interaction α � π affects the initial photon energy seen

by the electron, and κ parameter becomes1

κ(α) = 4
ω0ε0

(mc2)2 sin2
(α
2

)
. (3)

Almost any experimental application of the backscatter-

ing of laser radiation on the electron beam for any reason

implies the use of the scheme shown in Fig. 2. Laser radia-

tion is inserted into the machine vacuum chamber, directed

and focused to the interaction point where scattering occurs.

The dipole is used to separate scattered photons (and elec-

trons) from the electron beam, propagating in the machine’s

vacuum chamber. x-axis and z-axis define the coordinate

system in the interaction point, the plane of the figure is

the plane of machine, the vertical y-axis is perpendicular to

the plane of figure. After the dipole, the coordinate system

(x ′, z′) is rotated by the beam bending angle θ0.

Figure 2: Regular layout of ICS experiments realization.

For the FCC-ee polarimeter we assume the interaction of

laser radiation with electrons in the electron energy range

ε0 ∈ [45 : 185] GeV. The energy of the laser photon ω0

is coupled with the radiation wavelength in vacuum λ0:

ω0 = hc/λ0, where hc =1.239 841 93 eV·μm. In particular

when λ0 =1 μm, ε0 =100 GeV and α = π one obtains the

“typical” value of κ parameter for the FCC-ee case, κ � 1.9.

Maximum energy of backscattered photon ωmax obviously

1 this is correct when tan(α/2) � 1/γ.
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corresponds to the minimal energy of scattered electron εmin,

both values are easily obtained from definitions Eq. (1) –

Eq. (3) when u = κ:

ωmax =
ε0κ

1 + κ
and εmin =

ε0
1 + κ

. (4)

Note that ωmax = εmin when κ = 1. It’s not hard to show

that the scattering angles of photon θγ and electron θe (see

Fig. 1) depend on u and κ as:

θγ =
1

γ

√
κ

u
− 1 and θe =

u
γ

√
κ

u
− 1. (5)

The electron scattering angle θe can not exceed the limit

max(θe) = κ/2 · γ = 2ω0/mc2 and we see that this value

does not depend on ε0.

ICS Cross Section
ICS cross section depends on polarization states of all

initial and final particles [7]. It is common to average the

polarization terms of the final states, then the cross section

depends solely from the initial photon and electron polariza-

tions. In order do describe polarization states of the laser and

electron beams in the coordinate system x, y, z, presented in

Fig. 2, let’s introduce modified Stokes parameters.

• ξ⊥ ∈ [0 : 1] and ϕ⊥ ∈ [0 : π] are the degree of laser

linear polarization and its azimuthal angle.

• ξ� ∈ [−1 : 1] is the sign and degree of circular polar-

ization of laser radiation:
√
ξ2⊥ + ξ

2
� = 1.

• ζ⊥ ∈ [0 : 1] and φ⊥ ∈ [0 : 2π] are the degree of trans-

verse e± beam polarization and its azimuthal angle.

• ζ� ∈ [−1 : 1] is the sign and degree of longitudinal

spin polarization of the electrons:
√
ζ2
⊥ + ζ

2
� ∈ [0 : 1].

Then, the ICS cross section is described by the sum of three

terms: dσ = dσ0 + dσ‖ + dσ⊥. These terms are: dσ0 – un-

polarized electron; dσ‖ – longitudinal electron polarization;

dσ⊥ – transverse electron polarization:

dσ0

du dϕ
=

r2
e

κ2(1 + u)3
(
κ(1 + (1 + u)2) −

− 4
u
κ
(1 + u)(κ − u)

[
1 − ξ⊥ cos

(
2(ϕ − ϕ⊥)

) ] )
,

dσ‖
du dϕ

=
ξ�ζ�r2

e

κ2(1 + u)3 u(u + 2)(κ − 2u),

dσ⊥
du dϕ

=
−ξ�ζ⊥r2

e

κ2(1 + u)3 2u
√

u(κ − u) cos(ϕ − φ⊥).

(6)

In Eq. (6) re is the classical electron radius and ϕ is the

observer’s azimuthal angle. As one can see from Eq. (6), the

last term dσ⊥, most important for FCC-ee polarimeter, can

not modify the total cross section, which in absence of lon-

gitudinal polarization of electrons is obtained by integration

of dσ0 only:

σ0(κ) =
2πr2

e

κ

[(
1 − 4

κ
− 8

κ2

)
log(1 + κ)+

+
1

2

(
1 − 1

(1 + κ)2
)
+

8

κ

]
.

(7)

In case when κ 	 1 Eq. (7) tends to Thomson cross section

σ0 =
8
3
πr2

e (1 − κ).
The above expressions are enough e. g. to start Monte-

Carlo generator and allow further analysis of scattered parti-

cles distributions. The probability distribution of u is defined

by the cross section Eq. (6). Then the required properties,

like ω, ε, θe or θγ are obtained using Eq. (1) and Eq. (5).

However, the influence of bending magnet in Fig. 2 on scat-

tered electrons is not yet considered.

Bending of Electrons
Let’s describe the dipole strength by the parameter B,

assuming for the sake of brevity that it is proportional to the

integral of magnetic field along the electron trajectory. The

electron with energy ε will be bent to the angle θ = B/ε
under the assumption that B is the same for all energies

under consideration 2. By Eq. (1) we express the energy

ε of scattered electron through the ICS parameter u: ε =
ε0/(1 + u). This electron is bent by the dipole to the angle

θ =
B
ε
=

B
ε0
+ u

B
ε0
= θ0 + uθ0, (8)

i. e. θ is the sum of the beam bending angle θ0 and the

bending angle Δθ = uθ0, caused by electron energy loss in

ICS. Both θ0 and Δθ are shown in Fig. 2 for the maximum

possible u value u = κ. Note that κθ0 does not depend on

ε0 as well as max(θe). In ref. [8] it was suggested to use the

ratio Δθ/θ0 = κ for beam energy determination at ILC.

Let us introduce a new designation ϑx ≡ γ(θ − θ0) =
uϑ0 which is the angle Δθ, measured in units of 1/γ. The

electron scattering angle in ICS, expressed in the same units,

is ϑ = u
√
κ/u − 1 as it follows from Eq. (5). Combining

bending and scattering angles and splitting ϑ into x and y

components we get:

ϑx =
√

u(κ − u) cos ϕ + uϑ0,

ϑy =
√

u(κ − u) sin ϕ.
(9)

Since backscattered photons are not bent by the dipole,

the photon transverse angles (Eq. (5)) in the same space and

in the same units, according to similar considerations, are

the following:

ηx = −
√
κ/u − 1 cos ϕ − ϑ0,

ηy = −
√
κ/u − 1 sin ϕ.

(10)

2 The validity of this assumption will be discussed on page 3.

62th ICFA ABDW on High Luminosity Circular e+e− Colliders eeFACT2018, Hong Kong, China JACoW Publishing
ISBN: 978-3-95450-216-5 doi:10.18429/JACoW-eeFACT2018-TUPBB03

TUPBB03
158

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Polarization



POLARIMETER
The polarimeter will be installed in the FCC-ee section

shown in Fig. 3. After the dispersion suppressing dipole

magnet, about 100 m of free beam propagation without mul-

tipole magnets is reserved for separation of the ICS photons

and electrons from the beam. The interaction of the pulsed

Figure 3: Polarimeter location with respect to FCC-ee lattice.

laser beam with the electron beam occurs just between the

dipole and preceding quadrupole, where there is a local min-

imum of vertical β-function. In Fig. 4 there is the sketch of

the polarimeter apparatus arrangement in horizontal plane.
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Figure 4: Sketch of the polarimeter: dipole (L = 24.12 m,

θ0 = 2.13 mrad, B = 0.0135 T, R0 = 11302 m), vacuum

chamber, particle trajectories. Red vertical bars on the right

side show the location of the scattered particles detectors –

100 m away from the center of the dipole.

The laser radiation λ0 = 532 nm is inserted to the vacuum

chamber from the right and focused to the interaction point

(z=5 m). The laser spot transverse size at i. p. is σ0 =

0.25 mm. According to Fig. 4, laser-electron interaction

angle is α = π − 0.001 and the relative difference between κ
from Eq. (2) and κ(α) from Eq. (3) is as small as 2.5 · 10−7.

Spectrometer
Figure 4 helps to understand how much could be the dif-

ference of the B-field integral, seen by the electrons with

different energies. All of the electrons enter the dipole of

length L along the same line – the beam orbit. Then, the

radius of trajectory will be dependent on the electron en-

ergy. Let R0 to be the radius of an electron with energy ε0
and θ0 = L/R0 is the beam bending angle. The minimal

radius of an electron after scattering on the laser light will be

R0/(1+ κ). After passing the dipole these two electrons will

have the difference Δx � κLθ0/2 in transverse horizontal

coordinates. With the parameters of Fig. 4 this difference

is Δx � 43 mm. The length of the trajectories of these two

electrons inside the dipole will be also different, i. e. even in

case of absolutely uniform dipole their field integrals will not

be the same. With rectangular pole shape exact expression

for relative difference of the lengths of trajectories is:

ΔL
L
=

1

1 + κ

2

θ0
arcsin

��� θ02 (1 + κ)
√

1 +

(
κθ0
2

)2���−
− 2

θ0
arcsin

(
θ0
2

)
.

(11)

As we see this relative difference depends on θ0 and κ only.

With the set of parameters taken from Fig. 4, i. e. θ0 =
2.13 mrad and κ = 1.63, ΔL/L = 2.63 · 10−6.

The result of this section is the proof of the validity of as-

sumption about the equality of the integrals of the magnetic

field for the electron beam and scattered electrons. This

assumption was found to be rather accurate for the dipole

with perfectly uniform field, however shorter dipole is much
more preferable in order to decrease Δx and hence have less

concerns about the field quality.

Scattered Photons & Electrons
The Monte-Carlo generator was created to obtain the 2D

(x, y) distributions of scattered photons and electrons at the

detectors, located as it was shown in Fig. 4. The ICS param-

eters are: ε0 = 45.6 GeV and ω0 = 2.33 eV. The spectrom-

eter configuration is described by the beam bending angle

θ0 = 2.134 mrad, the lengths of the dipole L = 24.12 m

and two spectrometer arms. First arm L1 = 117 m is the

distance between laser-electron IP and the detector. Second

arm L2 = 100 m is the distance between the longitudinal

center of the dipole and the detector.

The impact of the electron beam parameters is accounted

by introducing the angular spreads according to the beam

emittances εx = 0.27 nm and εy = 1 pm. The horizontal and

vertical electron angles x ′ and y′ in the beam are described

by normal distributions standard deviations σx =
√
εx/βx

and σy =
√
εy/βy . The generator is arranged as follows:

• raffle u ∈ [0, κ] and ϕ ∈ [0 : 2π] according to 2D

function dσ(u, ϕ) Eq. (6)),

• raffle x ′ and y′ according to corresponding normal

distributions,

• obtain photon Xγ,Yγ and electron Xe,Ye transverse co-

ordinates at the detection plane:
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Xγ = x ′L1 − L1

γ

√
κ/u − 1 cos ϕ − θ0L2,

Yγ = y′L1 − L1

γ

√
κ/u − 1 sin ϕ,

Xe = x ′L1 +
L1

γ

√
u(κ − u) cos ϕ + uθ0L2,

Ye = y′L1 +
L1

γ

√
u(κ − u) sin ϕ.

(12)

The results of such a simulation for an electron beam with

ζ⊥ = 25% vertical (φ⊥ = π/2) spin polarization are pre-

sented in Fig. 5 and Fig. 6. The difference between the fig-

ures is the laser polarization ξ� = +1 (Fig. 5) and ξ� = −1

(Fig. 6). The 2D distributions for both photons and electrons

are plotted along the same horizontal axis x, where x = 0

corresponds to the position of the electron beam. The detec-

tors for scattered particles are located outside the machine

vacuum chamber. The scattered electrons distribution starts

from x = 40 mm: this is the radius of the vacuum chamber.
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−

−

−

−

−
−

−
−

κλ

−

−

−

κλ

− − − − −

×

−

κλ

− − − −

×
κλ

Figure 5: MC results, P⊥ = ξ�ζ⊥ = 0.25 and φ⊥ = π/2.
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×
κλ

− − − −

×

−

κλ

Figure 6: MC results, P⊥ = ξ�ζ⊥ = −0.25 and φ⊥ = π/2.

The 1D distributions in the bottom of each figure are the pro-

jections of 2D distributions to the vertical axis y. The mean

y-values of these distributions are shifted up or down from

zero according to the presence of beam polarization and cor-

responding asymmetries in ICS cross section. In Fig. 7 all

distributions are obtained by subtraction of corresponding

distributions from Fig. 5 and Fig. 6. Detecting the up-down

asymmetry in the distribution of laser backscattered photons

is a classical way to measure the transverse polarization of

the electron beam. In [9] it was proposed to use the up-down

asymmetry in the distribution of scattered electrons for the

− − − − − − − − − −
−

−

−

−

−
−

−

−

−

−
−

κλ

−

−

−

−

−

−

κλ

− − − −

−

−

κλ

− − −

−

−

κλ

Figure 7: The difference between corresponding distribu-

tions in Fig. 5 and Fig. 6.

transverse polarization measurement at the ILC. It was sug-

gested to measure the distribution of scattered electrons by

silicon pixel detector.

Maximum up-down asymmetry in the distribution of

scattered electrons occurs at the scattering angles of θ∗e =
±2ω0/mc2, which is approximately±9 μrad (see Eq. (5) and

Eq. (6)). Asymmetry can be observed only if the distribution

is not blurred by the electron beam emittance. On the other

hand, maximum up-down asymmetry in the distribution of

scattered photons occurs at the scattering angles of θ∗γ � 1/γ
which is almost the same as θ∗e in our particular case. But

e. g. when beam energy is about 5 GeV, θ∗γ is ten times

larger then θ∗e and the measurement of beam polarization by

photons looks like more preferable. What are the benefits of

scattered electrons against scattered photons for the FCC-ee

polarimeter?

• Scattered electrons propagate to the inner side of the

beam orbit, i. e. there is no direct background from

high energy synchrotron radiation.

• Unlike photons, charged electrons are ready to be de-

tected by ionization losses. The photons need to be

converted to e+e− pairs: this leads either to low detec-

tion efficiency either to decrease in spatial resolution.

• Despite the fact that the fluxes of scattered photons and

electrons are the same, the flux density of electrons

is much lower due to bending and corresponding spa-

tial separation by energies. Simultaneous detection of

multiple scattered electrons thus is much easier.

• Analysis of the scattered electrons distribution allows

to measure the longitudinal beam polarization as well

as the transverse one.

• As one can observe from Figs. 5–7, change of laser

circular polarization leads to a redistribution of the

scattered electron density within a fixed elliptic shape

of distribution. This fact potentially provides better sys-

tematic accuracy for beam polarization determination.

Nevertheless both photon and electron distributions are go-

ing to be measured by the polarimeter. First, to exploit
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directly the LEP and HERA experience. Second, to be able

to measure the center of the photon distribution in both x
and y dimensions. The latter is required for direct beam

energy determination, which will be discussed below.

SCATTERED ELECTRONS
This section owes its origin to the successful application

of the method of direct electron beam energy determination

by backscattering of laser radiation. The approach is based

on the measurement of ωmax (see Eq. 4) in cases when this

energy can be measured with good accuracy and in absolute

scale. For the last years, the positive experience with this

approach was accumulated at the low energy colliders VEPP-

4M, BEPC-II and VEPP-2000 [10]. Despite the fact that this

method is not directly applicable in FCC-ee case, let us try

to figure out what can be learned from the elliptical shape

of the distribution of scattered electrons, obtained by MC

simulations above.

We return to the consideration of the spatial distribution

of the scattered electrons. From Eq. (9) we obtain the square

equation on u:

(ϑx − uϑ0)2 + ϑ2
y = u(κ − u), (13)

with the roots u± =

κ + 2ϑ0ϑx ±
√
κ2 − 4(ϑ2

x + ϑ
2
y(1 + ϑ2

0
) − κϑ0ϑx)

2(1 + ϑ2
0
) . (14)

The average value of u and its limiting value for the large

values of ϑ0 do not depend on ϑy:

〈u〉 = u+ + u−

2
=
κ/2 + ϑ0ϑx

1 + ϑ2
0

ϑ0�1−−−−→ ϑx
ϑ0
. (15)

In the ϑx, ϑy plane all the scattered electrons are located

inside the ellipse (what we have seen in Figs. 5, 6), described

by the radicand in Eq. (14). The center of the ellipse is

located at the point [ϑx = κϑ0/2; ϑy = 0], its horizontal

semiaxis is A = κ
√

1 + ϑ2
0
/2 while the verical (along ϑy) is

B = κ/2. In particular, this means that

ϑmax
x =

κ

2

(
ϑ0 +

√
1 + ϑ2

0

)
ϑ0�1−−−−→ κϑ0. (16)

Recall that according to notation introduced above, ϑ-s are

the angles measured in units of 1/γ, while θ-s are the angles

in radians. In radians expression Eq. (16) looks like

Δθ =
κ

2

(
θ0 +

√
1/γ2 + θ2

0

)
θ0�1/γ−−−−−−→ κθ0, (17)

where Δθ and θ0 were presented in Fig. 2. In order to rewrite

the ICS cross section (Eq. 6) in ϑx, ϑy variables we calculate

the Jacobian matrix J = ∂(ϑx, ϑy)/∂(u, ϕ):

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ϑ0 +

κ/2 − u√
u(κ − u)

cos ϕ −
√

u(κ − u) sin ϕ

κ/2 − u√
u(κ − u)

sin ϕ
√

u(κ − u) cos ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

The determinant of J is:

det(J) = κ/2 − u + ϑ0

√
u(κ − u) cos ϕ =

=

√
κ2/4 − ϑ2

x − ϑ2
y(1 + ϑ2

0
) + κϑ0ϑx .

(19)

Hence dudϕ = 2dϑxdϑy/det(J), where “2” is due to the

sum of “up” and “down” solutions of Eq. (14). Let us per-

form another change of variables: instead of ϑx, ϑy we in-

troduce x and y. With these new variables the cross sec-

tion exists inside the circle of radius R = 1 centered at

(x = 0; y = 0):

x =
2ϑx/κ − ϑ0√

1 + ϑ2
0

, y =
ϑy

κ/2 . (20)

Then:

dudϕ =
κ dx dy√

1 − x2 − y2
,

u = 〈u〉 = κ

2

����1 +
xϑ0√
1 + ϑ2

0

���� ,
sin(ϕ) = y κ

2
√

u(κ − u)
.

(21)

In Eq. (21) the vertical transverse electron polarization (φ⊥ =
π/2) is assumed, then cos(ϕ − φ⊥) = sin(ϕ). Considering

backscattering of circularly polarized laser radiation (ξ� =
±1) on the electron beam, where both vertical transverse

(ζ⊥ � 0, φ⊥ = π/2) and longitudinal (ζ� � 0) polarizations

are possible, we rewrite the cross sections Eq. (6):

1

r2
e

dσ0

dx dy
=

1 + (1 + u)2 − 4(u/κ)(1 + u)(1 − u/κ)
κ(1 + u)3

√
1 − x2 − y2

,

1

r2
e

dσ‖
dx dy

= ξ�ζ�
u(u + 2)(1 − 2u/κ)
κ(1 + u)3

√
1 − x2 − y2

,

1

r2
e

dσ⊥
dx dy

= − ξ�ζ⊥
uy

κ(1 + u)3
√

1 − x2 − y2
.

(22)

Due to the term
√

1 − x2 − y2 in the denominator of Eq. (22)

the cross section has singularity a the edge of a circle (el-

lipse), which however is integrable.

Fitting the Distribution
The detectors for scattered photons and electrons are going

to be installed as it was shown in Fig 4. For the detection

of scattered electrons we consider a position measurement

using a silicon pixel detector (as in [9]) placed at the distance

L1 = 117 m from the Compton IP and L2 = 100 m from

the center of bending dipole. The active dimension of the

detector is 400×4 mm2, it is shifted horizontally 40 mm

away from the beam axis, assuming the given size of vacuum

chamber. The size of the pixel cell taken is 2×0.05 mm2,

i. e. there are 200 pixels in x and 80 pixels in y.

The pixel detectors for photons (with thin converter) and

electrons will measure the x and y positions of each particle

according to the scheme shown in Fig 8.
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Figure 8: The xy plane of particle detection. X0 is the hori-

zontal center of gravity in the scattered photons distribution.

X1 is the electron beam position and at the same time – the

left edge of the scattered electrons ellipse, while X2 is the

right side of the ellipse. Vertical size ΔY = L1 · (4ω0/mc2).

We will fit the MC distribution of scattered electrons by

theoretical cross section Eq. (22). This cross section has a

very sharp edge at x2 + y2 = 1 so the integrals of Eq. (22)

over each pixel are required for fitting. The cross section

dependencies on u and y are much smoother so it was found

to be enough to take the integral

Ixy =

x1∫
x0

y1∫
y0

dx dy√
1 − x2 − y2

(23)

over a rectangular pixel limited by [x0, x1] in x and [y0, y1]
in y which is not difficult to do analytically.

The second step is to calculate the convolution of Ixy with

the two-dimensional normal distribution of initial electrons:

P(x, y) = 1
2πσxσy

exp
(
− x2

2σ2
x
− y2

2σ2
y

)
. It is not hard to show,

that σx and σy are the RMS electron beam sizes (due to

betatron and synchrotron motion) at the plane of detection.

The last step is to account for the cross section dependencies

on u and y parameters in Eq. (22).

The F(x, y) function was built based on these considera-

tions in order to describe the shape of the scattered electrons

distribution, see Fig. 9. It has nine parameters except nor-

malization:

• The first parameter is κ, defined in Eq. (2). This pa-

rameter is fixed according to approximate value of the

beam energy cause F(x, y) weakly depends on κ, ±1%

changes does not matter on the fit results.

• The next four parameters are X1,X2,Y1,Y2 – positions

of the ellipse edge, see Fig. 8.

• The sixth and seventh are responsible for polarization

sensitive terms P⊥ = ξ�ζ⊥ and P‖ = ξ�ζ�. In the

example below the fixed conditions are φ⊥ = π/2 and

ζ� = 0.

• The eighth and ninth are σx and σy – the electron beam

sizes at the azimuth of the detector.

Fig. 9 shows the results of numerical experiment with the

initial parameters ε0 = 45.6 GeV, λ0 = 532 nm, P⊥ = 0.1

and 2 · 107 scattering events. The distribution of scattered

electrons was then fitted by the function F(x, y).

−

−

−

κλ

χ

μσ
μσ

−

−

−

−

−

−

−

−

−

Figure 9: Top-left: MC distribution of scattered electrons

H(x, y). Bottom-left: function F(x, y) after fitting. Bottom-
right: normalized difference: (F(x, y) − H(x, y))/

√
H(x, y).

Top-right: the F(x, y) parameters obtained by fitting (except

X0, which is the mean x value of the photons distribution).

The parameters obtained directly from the fit are the el-

lipse edge positions X1, X2, Y1, Y2, beam transverse sizes

σx and σy and the beam polarization degree P⊥. In this

experiment P⊥ is measured with 1.6% accuracy (0.16% ab-

solute accuracy). The beam energy, Ebeam in Fig. 9, and its

measurement accuracy (� 80 ppm) were evaluated from X0,

X1 and X2:

Ebeam =
(mc2)2
4ω0

· X2 − X1

X1 − X0
. (24)

SCATTERING RATE
Consider CW TEM00 laser radiation propagating along

z-axis. If laser light of wavelength λ0 is focused at z = 0 to

the waist size of σ0, the beam size will evolve along z:

σ(z) = σ0

√
1 +

(
z

zR

)2

, (25)

where zR = 4πσ2
0
/λ0 is the Rayleigh length. The optical

intensity [W/cm2] in a Gaussian beam of power P [W] is:

I(r, z) = P
2πσ(z)2 exp

(
− r2

2σ(z)2
)
. (26)

Far field divergence is θ = σ0/zR = λ0/4πσ0. Laser radia-

tion power is the number of photons emitted per second:

P = dE/dt = hν · dN/dt [J s−1]. (27)

Thus the longitudinal density of laser photons along z is:

ρ‖ = dN/dz = Pλ0/hc2 [cm−1]. Consider an electron

(v/c � 1) propagating towards the laser head sea with small

incident angle α as illustrated by Fig. 10. The photon target
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Figure 10: An electron (the black sloping line) passing

through the laser beam waist.

density for this electron is defined as:

ρ⊥ = ρ‖
(1 + cosα)

2πσ2
0

∞∫
−∞

exp
(
− z2 tan2 α

2σ(z)2
)

1 + (z/zR)2
dz [cm−2]. (28)

Scattering probability W is determined by the product of

ρ⊥ and the scattering cross section. The latter is defined by

Eq. (7) and depends on κ parameter, see Fig. 11.
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Figure 11: The ratio of the ICS cross section to Thomson

cross section vs electron energy.

Maximum scattering probability Wmax is reached in case

α = 0 and at low energy with Thomson cross section σT =
0.665 barn.

Wmax =
σT

πσ2
0

Pλ0

hc2

∞∫
−∞

dz
1 + (z/zR)2

=
4πσT P

hc2
=

P
Pc
, (29)

where Pc = �c2/2σT � 0.7124 · 1011 [W] is the power of

laser radiation required for 100% scattering probability. We

see that Wmax depends neither on the radiation wavelength

λ0 nor the waist size σ0, but on the laser power only. A low

energy electron bunch with 0.7 · 1011 population colliding

head-on with 1 W of laser radiation will produce one Comp-

ton scattering event – this is true if the transverse sizes of

the electron bunch is much smaller then the laser ones.

The loss in scattering probability when α � 0 is defined by

the ratio of angle α to the laser divergence angle θ = σ0/zR.

Since the mirror is required in order to deliver the laser beam

to IP, θ should be always smaller than α: this ratio finely will

describe the laser and electron beam separation at the place

of mirror installation (see Fig. 4). If we define the “Ratio of

Angles” as RA = α/θ, probability loss will be expressed as:

η(RA) = W(α)
Wmax

=
1

π

∞∫
−∞

exp

(
− x2R2

A

2(1 + x2)

)
dx

1 + x2
. (30)

The result of numerical integration is presented in Fig. 12.

η η

Figure 12: η(RA) vs RA by Eq. (30) and its approximation.

At the FCC-ee there will be polarized pilot bunches for

regular beam energy measurement by resonant depolariza-

tion. So the laser system should provide the backscatter-

ing on a certain electron bunch: the laser operation in CW

mode is thus not possible. The FCC-ee revolution frequency

� 3 kHz is comfortable for solid-state lasers operating in

a Q-switched regime. The laser pulse propagation can be

described as:

ρ‖(s, t) =
Nγ√

2πcτL
exp

(
−1

2

(
s − ct
cτL

)2
)
, (31)

where τL and EL are pulse duration and energy, Nγ =

ELλ/hc. Scattering probability for α = 0 is:

W =
PL

Pc
·

∞∫
−∞

exp{−2(xRL)2}
π(1 + x2) dx, (32)

where PL = EL/
√

2πτL is the instantaneous laser power

and RL = zR/cτL is the “Ratio of Lengths”. The scattering

probability for an arbitrary α is:

W =
PL

Pc
· η(RL,RA), where

η(RL,RA) =
∞∫

−∞

exp

(
−x2

(
2R2

L +
R2
A

2(1 + x2)

))
π(1 + x2) dx.

(33)
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The map of the efficiency η(RL,RA), obtained by numerical

integration of Eq. (33), is presented in Fig. 13.

θα

τ

η

Figure 13: η(RL,RA) color map.

Now we have enough instruments to estimate the flux of

backscattered photons, obtained from one FCC-ee bunch in

the configuration, shown in Fig. 4.

• Beam electron energy Ebeam = 45.6 GeV.

• Laser wavelength λ0 = 532 nm.

• Cross section (letter Z on Fig. 11): R× �50%.

• Waist size σ0 = 0.25 mm, zR = 148 cm.

• Far field divergence θ = 0.169 mrad.

• Interaction angle α = 1.0 mrad (horizontal crossing).

• Laser pulse: EL = 1 [mJ], τL=5 ns, f = 3 kHz.

• Instantaneous power: PL = 80 kW, PL/Pc = 1.1 ·10−6.

• Ratio of angles RA = 5.9, ratio of lengths RL = 0.98.

• η(RL,RA) �13% (see Fig. 13).

• Scat. probability W = PL/Pc ·R× ·η(RL,RA) � 7 ·10−8.

• Ne = 1010 e±/bunch: �Nγ = f · Ne · W � 2 · 106 [s−1].

• Average laser power is P = f · EL � 3 W.

The influence of the electron beam sizes on the above esti-

mations was not considered cause here it is nonessential.

SUMMARY
The electron beam polarimeter for the FCC-ee project

has been considered. With the laser system parameters, de-

scribed in the latter section, it allows to measure transverse

beam polarization with required 1% accuracy every second.

With the suggested scheme, this apparatus can also measure

the beam energy, longitudinal beam polarization, beam po-

sition and transverse beam sizes at the place of installation.

The statistical accuracy of direct beam energy determination

is ΔE/E < 100 ppm within 10 s measurement time. The

possible sources of systematical errors require additional

studies. The best case of such studies would be the experi-

mental test of the suggested approach on low-emittance and

low-energy electron beam.
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