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Abstract

Superconducting CW e–linacs presently in operation
(examples are CEBAF, Elbe, S-Dalinac) employ one rf
power source per cavity to guarantee sufficient field control
while operated at high loaded quality factor to up to 3 · 10 7

(S-Dalinac). Although the control of cavities at a loaded
Q of 1 · 108 has been achieved experimentally [1], the con-
trol of the vector-sum under similar conditions has not been
proposed or analyzed for future cw linacs despite potential
significant cost savings on rf power installation. The main
concern is that large microphonics could lead to a strong
imbalance in the individual cavity field in the vector-sum
which could drive one or more cavities beyond its opera-
ble field limit. Furthermore the quality of field regulation
could degrade. We present the results of a recent study
of vector-sum control for cavities operated at high loaded
quality factor which indicates that moderate microphonics
are acceptable without exceeding the cavity operable limits
and while maintaining sufficient rf field stability.

INTRODUCTION

Vector sum control has so far not been considered for
cw-operation of low current superconducting linacs be-
cause of their high loaded quality factors aligned to the
small bandwidth of the superconducting cavities. The con-
cern is that mechanical vibrations due to microphonics and
lorentz forces of the system may lead to field imbalances in
the individual cavities, which would have negative effects
on a sufficient and robust rf-control. Performing studies on
this topic may show the feasibility of using vector sum (vs)
control, which could decrease installation costs. This is the
main advantage of the concept because only one LLRF sys-
tem for multiple cavity control is required. The idea is to
treat a system of cavities as one object. This demands an al-
most equal behavior of the individual components, so there
are only small parameter tolerances allowed. Furthermore
a balanced RF power distribution in amplitude and phase is
required.

In the following sections simulations of vector sum con-
trol of high loaded Q cavities are presented. At the begin-
ning some general definitions are given. We introduce the
influence of microphonics and illustrate the concept of vs
control. Next the simulation results for selected scenarios
are demonstrated. Finally we point out the influences of
calibration errors and cavity detuning caused by electro-
magnetic radiation pressures (lorentz force).

PRELIMINARIES

First we define some general assumptions and parame-
ters used in the cavity modeling and for the simulation. For
the simulations we operate with Ql = 3 · 107, which cor-
responds to a full bandwidth of 2 ω12 ∼ 43 Hz (FWHM) at
a given resonant frequency of frf = 1.3 GHz. This is the
operation frequency of TESLA-Type cavities assumed for
the simulations.

Next a sufficient electrical and mechanical model needs
to be found, describing the behavior of the real cavity. It
has been shown [2] that the following physical model ap-
proximation fulfills this requirement.

Cavity Model

The cavity can be described as an analogue to a series
of coupled LCR resonators. After separation of the fast
RF oscillations we find a first order differential equation
for the envelopes of the electrical field components I (in-
phase) and Q (quadrature). This can now be transformed to
a state space description, given by:
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The second term on the right hand side gives the forced
part of the system driven by the current I , multiplied with
the shunt impedance and the half cavity bandwidth,

R =
r

Q
·Ql , ω12 =

ωrf

2 ·Ql
. (2)

The normalized shunt impedance r/Q is given as
1024 Ω. The first term on the right hand side gives the
state matrix with ω12 on the main diagonal, amended by
the detuning Δω = ωrf − ω0 on the off diagonals, which
couples the electrical field components VI and VQ, follow-
ing denoted as field gradient. The detuning is a time-variant
parameter with a strong impact on the system behavior as
we will see and discuss next.

Microphonics

Mechanical vibrations of the cavities are unwanted but
unavoidable during operation. This leads to small geomet-
ric changes in the cavity walls with the effect of shifting the
eigenfrequency (sensitivity: 300 Hz/μm length change) as
shown in Fig. 1. For high loaded Q this is of course more
dramatic, because of the smaller bandwidth, e.g. Q l =
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3 · 107 corresponds to a half bandwidth of roughly 20 Hz.
Microphonic detuning amplitudes in this area are rare but
possible and would cause a field drop in the cavity of 50%.

Figure 1: Resonance curve displacement due to micro-
phonic vibrations.

For the simulations we constitute the microphonics by a
ordinary sinusoidal oscillation given by:

Δω(t) = AΔf sin(2πfmt + φ) (3)

where AΔf denotes the detuning amplitude and fm the vi-
bration frequency of the microphonic noise.

Microphonic oscillations are distributed over a fre-
quency range for broadband excitation and spectral lines
and not strictly correlated except of geometrical modes. Is-
sues of controlling these ‘disturbances’ occur in combina-
tion with coupled systems like the principle of vector sum
control.

Vector Sum Control

It is obvious that controlling a combination of several
cavities in one vector sum is more challenging then indi-
vidual control of a single cavity. Uncorrelated errors will
be attenuated in the vs, which leads to lower rms power re-
quirements compared to single cavity control, but the peak
power requirements will be the same for both control struc-
tures. Due to the nonlinearities in the high power amplifiers
there exists an advantage for the vector sum control con-
cept. In general the same parameters (Q l , ω0) in the indi-
vidual components are desired. As already mentioned be-
fore, a very accurate calibration of the system is essential.
The basic idea is shown later, but the consequence of a cal-
ibration error is illustrated in Fig. 2. The measured signal
differs from the real (beam seen) vector which leads to a er-
roneous feedback signal. Even with a well regulated vector
sum, individual cavity gradients can fluctuate in the pres-
ence of detuning effects like microphonic noise. Therefore
we define the vector sum seen by the beam:

VV S =
1
N

N∑

i=1

Vi −ΔV (4)

where Vi, ΔV are the single cavity gradients and the error
in vs calibration respectively. N is the number of cavities
contributing to the vector sum. The variance of the vs is
computed as the difference between the setpoint and the
measured vs. For the simulations we assume a perfect cal-
ibrated system. The errors in the vector sum are exclusive
detuning effects.

Figure 2: Influence of the calibration error on the feedback
signal

SIMULATIONS

The cavities in the vector sum control loop model are im-
plemented and computed in Matlab/Simulink c©. The basic
parameters are as in the previous section. For integrity we
need to mention some additional assumptions. The individ-
ual cavities are fully decoupled and allowed to act indepen-
dently, except for the feedback given by the control loop,
which is a simple proportional feedback with a gain of
K = 100 for both field components. CW operation needs
a constant feedforward (driving) term, fixed for the simu-
lation to a constant power of P = 3.25 kW corresponding
to a gradient of V = 20 MV/m for the given loaded Q
and an undetuned cavity in steady state. This assumption is
an approximation because it neglects the effects caused by
detuning due to lorentz forces having influence on the sta-
bility, which will be shown later. Detuning effects in these
simulations are just caused by microphonics.

Case 1

For the first example we try to explain the principle be-
havior of the vs control loop for a special case of micro-
phonic disturbances on the system. Therefore it is assumed
we have a variable number N of cavities, where N − 1
cavities oscillate with the same microphonic vibration fre-
quency fm (3). The remaining cavity is not detuned at all
Δω = 0, and will be the source for the observed gradient
excursions. The detuning will lead to a field drop of the
vector sum ΔV �= 0 resulting in a increase of the incoming
power to the system due to the feedback loop. Unfortu-
nately the equally distributed power to the subsystems also
increases the gradient in the undetuned cavity (Fig. 3).
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Figure 3: Gradient imbalance of resonant cavity for a feed-
back gain of 100 and the vector sum of 8 cavities.

Increasing the detuning amplitude AΔf and varying the
number of cavities N significantly influences the gradient
imbalance of the resonant cavity. For the vibration fre-
quency fm = 100 Hz the simulation results are plotted
in Fig. 4. As expected the peak gradient will increase at

Figure 4: Gradient imbalance as function of AΔf and
N ,fm = 100 Hz

higher detuning which is obvious from (1), (comp. Fig. 1).
However it converges to a limit peak gradient with increas-
ing number of cavities in the vector sum. To become more
like real microphonics we next want to vary also the vibra-
tion frequencies in the individual cavities.

Case 2

For the second example the same conditions as in case
1 are used except N is held constant to a vector sum of
eight cavities and the vibration frequencies of the cavities
are changed. To include some statistics in the simulations
a frequency spread over the cavities is performed. This is
done for two ranges (10− 20 Hz and 100− 200 Hz) which
will be described by low frequency and high frequency re-
spectively. The peak gradients of the resonant cavity and
the power requirement of the whole system are shown in
Fig. 5.

Figure 5: Example for case 2 with detuning of full band-
width in the high frequency range.

The results for the various simulations are collected in
Table 1. The peak and average values are given for the
power and gradient.

fm AΔf Vmax Vave Pmax Pave

Hz s−1 MV m−1 MV m−1 kW kW
10-20 0.25ω1/2 20.53 20.36 3.486 3.37
10-20 0.5ω1/2 22.09 21.34 4.215 3.725
10-20 ω1/2 28.21 25.30 7.62 5.302
10-20 2ω1/2 48.65 37.92 26.48 12.3

100-200 0.25ω1/2 20.02 20.01 3.41 3.27
100-200 0.5ω1/2 20.07 20.05 3.874 3.313
100-200 ω1/2 20.27 20.19 5.729 3.487
100-200 2ω1/2 21.10 20.76 13.10 4.203

Table 1: Simulation results for 8 cavity vector sum control
(case 2)

High microphonic frequencies (> cavity bandwidth)
have less influence on the field imbalances of the cavity,
which is obvious because the cavity acts like a low pass and
therefore is more sensitive to low vibration frequencies. As
expected the field imbalance is higher with increasing de-
tuning amplitude. Modeling the vibrations with sinusoidal
oscillations gives an intuition for the system behavior. Nev-
ertheless real microphonics in cavities have different prob-
ability distributions, i.e. the peak gradient excursions will
be rare. For the simulations we neglected the influence of
calibration errors while computing the vector sum. Never-
theless we like to introduce the fundamental issue next.

FIELD STABILITY AND CALIBRATION
ERROR

To compute the vector sum well it is essential to mini-
mize the calibration error. Furthermore the amplitude and
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phase errors are correlated [3] as given in (5)
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At FLASH the calibration is done by measuring the field

with and without beam. The difference is assumed to be
the beam induced field which can be estimated from the
known beam and cavity parameters (comp Fig. 6). This
can be done to a limited accuracy which can be illustrated
by the following example. Including the dependence of the
amplitude and phase errors, we assume that it is possible to
measure the field vector (without beam) with an accuracy
of 0.3% at a of 20 MV/m, and assume a beam induced
field of 2 MV/m which corresponds to a beam current of
roughly 65.1 μA for the cavity parameters introduced in the
preliminaries. Then the vector sum can be calibrated with
an accuracy of 3% and by 1.7◦ in phase.

Figure 6: Calibration with beam induced field.

It turns out that the signal measured by the detector must
have a good SNR and be linear to guarantee an adequate
calibration of the vector sum. Otherwise the feedback sys-
tem is not able to control the cavity fields which will lead to
field imbalances even without the presence of microphon-
ics.

PONDEROMOTIVE INSTABILITY

In the simulations we assumed the absence of field radi-
ation pressures, called lorentz forces. These forces cause
deformations on the cavity walls leading to deflections of
the eigenfrequency like microphonics. The combination of
both effects under certain circumstances can drive the sys-
tem into instability. The lorentz force dynamics in the me-
chanical model are implemented by the following second
order differential equation for the detuning Δω:

Δ̈ω = − 1
τ1

Δ̇ω − τ2
2 Δω − 2π τ2

2 K V 2. (6)

The model was given by [4] and validated for Tesla-
Type cavities with τ1 = 125 μs and τ1 = 3608s−1 and
K = 0.64 HzMV−2 as parameters. It is easy to see that
this is a strong nonlinear effect due to the multiplication
of the squared gradient V 2. Also it can be determined
that for the given parameters Δω ≤ 0 which leads to a
dependency from which ‘direction’ a sweep through the

resonance frequency is performed. Microphonics in the
system produce oscillation about the equilibrium point of
ω0 = ωrf and pass from both directions. Fig. 7 illustrates
the consequence for both sweeping directions.

Figure 7: Sweeping curves in single cavity.

The positive pre-detuned characteristic (blue) is still in-
creasing after the resonance point is reached. Lorentz
force detuning compensates the sweep detuning to a cer-
tain point, where suddenly the gradient drops immediately
and oscillates. This effect can be described by ponderomo-
tive instability. The oscillations are caused by the eigenfre-
quency τ1 of (6). The opposite sweeping direction leads to
the inverted behavior (green).

So far we have studied a single cavity in open loop.
Combining more then one cavity to a vector sum, which
we already had done for the other problems, and control
by the same proportional feedback, it can be observed that
these instability effects appear with a strong impact on the
system. Will the vector construct collapse for special exci-
tations on the system? In the simulations it can be observed
that for low vibration frequency, the feedback controller is
able to stabilize the system. For high vibration frequencies
the low pass character of the cavities demonstrate compa-
rable behaviors to those already observed in case 2. Un-
fortunately there exists in between both frequency ranges a
bandwidth where microphonic excitations cause instabili-
ties during the simulations. It needs to be proven for more
reasonable distributions if these characteristics are also ob-
servable. If this area of instability can be estimated, it is
possible to install actuators for this frequency range at the
system to attenuate the vibrations and overcome this draw-
back.

CONCLUSION

With the given simulation results we come to the conclu-
sion that vector sum control should be considered for cw
operation of high loaded Q cavities. It was demonstrated
that microphonic levels of two bandwidths or half band-
widths for high microphonic frequencies (fm = 100 Hz
and fm = 20 Hz) respectively can be accepted. Peak gra-
dient and power excursions will occur very rarely for real
microphonic probability distributions. Operational proce-
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dures like provisional beam interruptions for critical detun-
ing could be developed to allow higher microphonics. Also
counteracting piezo actuators can be adjusted to prevent the
system of vibrations in distinguished low frequency band-
width.

The given considerations should contribute to summa-
rize the main effects appearing in the vs control concept
for high loaded Q cavities and the correlation in between.
Further studies including vector sum calibration require-
ments and lorentz force detuning with real microphonics
distributions will improve quantitative understanding.
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