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Abstract

CBETA is an Energy Recovery Linac (ERL) accelerating

an electron beam to 150 MeV in four linac passes. Instead of

having four separate return loops to the linac, it instead has

a single fixed field alternating gradient (FFAG) beamline

with nearly a factor of 4 energy acceptance. While ideally

the FFAG would be circular with identical cells all around,

space and cost considerations dictate that small radius of

curvature FFAGs should be used near the linac, connected

by a straight beamline. To ensure good orbit matching over

the entire energy range, adiabatic transitions are inserted

between the arcs and the straight. After briefly introducing

basic principles of FFAG optics, we describe how we choose

the parameters of the arc cell, the basic building block of

the lattice. We then describe how the straight cell is chosen

to work well with the arc. Finally we describe the design

process for the transition that ensures orbits over the entire

energy range end up very close to the axis of the straight.

We discuss how the realization of this lattice design with

physical magnets impacts the design process.

THE BASIC PARAMETERS

CBETA [1], illustrated in Fig. 1, is an energy recovery

linac that will make 4 accelerating passes through the linac,

and return the beam to the linac using a single fixed field

alternating gradient (FFAG) return line, which must simulta-

neously transport beams from all passes, ranging in energy

from 42 MeV to 150 MeV. At the ends of the linac are 4

spreader/combiner lines, each of which transports a single
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Table 1: Basic parameters for the FFAG return line.

Total energy, pass 1 (MeV) 42

Total energy, pass 2 (MeV) 78

Total energy, pass 3 (MeV) 114

Total energy, pass 4 (MeV) 150

Focusing quadrupole length (mm) 133

Defocusing magnet length (mm) 122

Minimum short drift length (mm) 66

Minimum long drift length (mm) 123

Arc radius of curvature, approximate (m) 5.1

Arc cell bend angle (deg.) 5

Cells per arc 16

Cells per transition section 24

energy from the linac to the FFAG line or from the FFAG

line back to the linac.

The FFAG return line has arcs at its ends (FA and FB

in Fig. 1) with a relatively small bending radius to keep

the machine compact. Completing the return to the linac

requires a section that is straight (ZA and ZB in Fig. 1) to

connect the two arcs. We connect the arcs to the straights

with adiabatic transition sections (TA and TB in Fig. 1).

Table 1 describes the basic requirements for the FFAG

line design. The energies correspond to a four-pass energy

recovery linac with a 6 MeV injection energy. The minimum

drift lengths result from allowing space for various devices

(the short drift allows for a button beam position monitor

(BPM), the long drift will allow for a wide variety of de-

vices) and any overhang of magnet hardware. The radius

of curvature is a result of a space limitation. The magnet

lengths and maximum energy are parameters related to an

earlier design using an iron-dominated magnet design, but

are reasonable choices that were retained.

Each arc has 16 cells, giving 80 degrees of bend. The

transition will be designed with a symmetry such that the

average bend per cell is half the arc cell bend angle. Thus

each transition section supplies 60 degrees of bend. Thus

each spreader/combiner supplies the remaining 40 degrees

of bend for half the machine.

Every focusing quadrupole will have a horizontal correc-

tor (vertical dipole field), while every defocusing magnet

will have a vertical corrector.

ARC CELL

The arc cell is the basic building block for the FFAG

beam line. An illustration is given in Fig. 2. The basic

cell is a doublet, consisting of a focusing quadrupole and

a combined function magnet with a dipole and defocusing

Figure 1: The CBETA energy recovery linac, with sections

labeled. The FFAG beamline, discussed in this paper, con-

sists of the sections labeled FA, TA, ZA, ZB, TB, and FB.
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Figure 2: Illustration of FFAG arc cell geometry, showing

two full cells. Lines show the reference geometry, with dots

delimiting the ends of the segments. Magnet offsets are the

distance of the magnet ends from the nearest dot. Segments

bend by half the cell bend angle at each dot.

Table 2: Parameters for the arc cell.

BPM block length (mm) 42

Pipe length (mm) 402

Magnet offset from BPM block (mm) 12

Focusing quadrupole length (mm) 133

Defocusing magnet length (mm) 122

Single cell horizontal tune, 42 MeV 0.368

Single cell vertical tune, 150 MeV 0.042

Integrated focusing magnet strength (T) −1.528

Integrated defocusing magnet strength (T) +1.351

Integrated field on axis, defocusing (T m) −0.03736

quadrupole component. The geometry is defined to relate

to the vacuum chamber design, which consists of 42 mm

BPM blocks connected by straight beam pipes. It is thus

defined by a sequence of straight lines, which bend by half

the cell angle where they join. The parameters that define

the geometry are given in Table 2. The BPM blocks are

centered in the short drift between the magnets. The precise

value for the pipe length was chosen to help get the correct

value of the time of flight for the entire machine.

Once the longitudinal lengths are fixed, there are three free

parameters: two magnet gradients, and the dipole field in the

defocusing magnet. The parameters are chosen so that the

maximum horizontal closed orbit excursion at 150 MeV and

the minimum horizontal closed orbit excursion at 42 MeV,

relative to the line defining the coordinate system, are of

equal magnitude and opposite sign.

The remaining two degrees of freedom are used to set the

tunes at the working energies. When we discuss “tunes” we

are referring to a single cell, treated as a periodic system.

High horizontal and low vertical tunes generally reduce or-

bit excursions and magnet gradients. However, one must

avoid the horizontal half-integer resonance at low energy

and becoming linearly unstable at high energy in the vertical

plane. Furthermore, we have found that being near third-

order resonances, in particular the 3νx = 1 and νx + 2νy = 1

resonances, can lead to emittance growth. This emittance

growth is related to nonlinear resonances of the single cell

system, without errors. The effect can be seen in Fig. 3,

where we plot the 600-turn dynamic aperture rather than

emittance growth, showing that there are significant drops

Figure 3: Horizontal and vertical dynamic apertures for the

arc cell (tracked for 600 cells) at fixed energies, given as a

maximum value of the normalized action, plotted against the

distance from a resonance line for the zero-amplitude tune

for the energy of the calculation. These are the only drops of

this scale in the dynamic aperture until high energies where

the vertical motion becomes unstable or low energies where

we reach a tune of 0.5 per cell horizontally.

in the dynamic aperture as we approach the 3νx = 1 and

νx + 2νy = 1 resonance lines. Note that the dynamic aper-

tures away from those resonance lines are well beyond the

beam’s normalized emittance of 1 μm.

We have chosen our working point in the tune plane by

considering how much gradients would need to change to

reach problematic resonance lines. We quantify this change

by √(
ΔB1F

B1F

)2

+

(
ΔB1D

B1D

)2

(1)

where B1F (B1D) refers to the gradient of the (de)focusing

magnet. We find the minimum value for this quantity for

values meeting the resonance condition in question, and de-

fine that to be the parametric distance. The working point is

chosen so that the parametric distance of the 150 MeV point

to the νy = 0 line is approximately equal to the parametric

distance of the 42 MeV point to the νx+2νy = 0 line, and the

parametric distances of the 150 MeV and 114 MeV points

to the νx − 2νy = 0 line are about the same. The resulting

working point is reasonably well-defined by the 42 MeV

horizontal and 150 MeV vertical tunes, which are given in

Table 2. The parametric distance to the νx + 2νy = 0 line

is 3.8%, to the νy = 0 line is 3.7%, and to the νx − 2νy = 0

line is 1.2% for both energies.

The computation of the parameters is performed using

field maps generated by the finite element software OPERA.

Field maps for an initial estimate for the magnet designs are

created, and these field maps are scaled and shifted to achieve

the desired orbit centering and tune working point. Magnet

designs are then modified to have the resulting integrated

gradient and central field, field maps are computed from

those designs, and the results are checked (and were found
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Figure 4: Tune per cell for the arc and straight cells, treated

as periodic. Design energies are shown with dots. Computa-

tions are made with field maps for Halbach magnet designs.

Figure 5: Tune per cell for the arc and straight cells, treated

as periodic, as a function of energy. Computations are made

with field maps for Halbach magnet designs.

to be in good agreement). Figures 4 and 5 show the tune per

cell for the arc cell, and Fig. 6 shows the periodic orbits in

the arc cell.

STRAIGHT CELL

The transition will adiabatically distort the lattice cell

from the arc cell to a straight cell. We should thus first de-

cide the parameters of the straight cell. To keep the transition

smooth, all magnets of a given type (focusing/defocusing)

will have the same integrated gradient and length. In addi-

tion, we will use the same focusing quadrupole everywhere.

We will, however, use different types of defocusing magnets,

differing in the integrated field on their axis. In particular,

the defocusing magnet for the straight section will have zero

field on its axis.

Table 3: Parameters for the straight cell.

BPM block length (mm) 42

Pipe length (mm) 413

Magnet offset from BPM block (mm) 17.5

Focusing quadrupole length (mm) 133

Defocusing magnet length (mm) 122

Straight cell count 27

If the longitudinal lengths in the straight cell are identical

to those of the arc cell, the tunes and Courant-Snyder beta-

tron functions would differ between the arc and the straight

cells due to additional focusing occurring due to the curved

paths the particles take through the arc magnets. Our goal

is to make the tunes of the straight cell as close as possible

to those of the arc cell. The only parameters available to do

this are the drift lengths. The criterion used to determine

the best fit is

∑
p

[∑
i

Tp,str(Ei) − Tp,arc(Ei)

]2

(2)

where Tp,str(E) is the trace of the transfer matrix at energy

E for plane p (i.e., twice the cosine of the phase advance)

for the straight cell, and similarly Tp,arc(E) for the arc cell.

Fig. 7 shows this criterion plotted when varying the drift

lengths. Note there is a optimum along the dark band shown

in the figure. It is slightly more favorable to be toward the

longer magnet offset end of that band. However, if we wish

to keep the long drift length at least as long as it is in the arc,

then there is a limit to how large an offset one can use. We

thus choose the parameters in Table 3. The corresponding

tunes are shown in Figs. 4 and 5.

TRANSITION

The goal of the transition is to bring the orbits in the arc

at and near the design energies onto the axis in the straight.

It accomplishes this by adiabatically varying the cell pa-

rameters from those in the arc to those in the straight. The

adiabatic variation allows the entire energy range to end up

very close to the axis in the straight. At that point, to get the

correction exactly right at the design energies, the correctors

can be used, and the strengths required will be very small if

the transition works well.

To measure the effectiveness of the transition, we begin

with the periodic orbit in the arc cell, transport it through

the transition, and determine the normalized action in the

straight cell when the straight cell is treated as periodic. The

normalized action is

Jstr(E) =
1

2mec

(
γxpx2

+ 2αx xpx +
βx

p
p2
x

)
(3)

where βx , αx , and γx are the Courant-Snyder functions for

the straight cell, p is the total momentum for the orbit, x is

the horizontal position and px is the horizontal momentum.

The values of Jstr give an approximation to the emittance
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Figure 6: Periodic orbits in the arc cell. Also shown are the coordinate reference segments and the nominal magnet positions.

The width of the magnets shown is equal to the pipe aperture in the midplane.

Figure 7: Quantity in Eq. (2) as a function of the pipe length

(distance between the ends of the BPM blocks and offset

length (distance of quadrupole ends from the ends of the

BPM blocks) in the straight cell. Line drawn corresponds to

a long drift length equal to that of the arc cell (123 mm).

growth, and should therefore be compared to the normalized

emittance of the beam, which is 1 μm.

Each parameter p being varied has a value pi at cell i

given by

pi =

[
1 − fT

(
i

nT + 1

)]
parc + fT

(
i

nT + 1

)
pstr (4)

where cell 1 is adjacent to the straight and cell nT = 24 is

adjacent to the arc. The parameters varied are the lengths of

the drifts, bend angle at the BPM block, and the distance of

the axis where the integrated field of the defocusing magnet

is zero from the coordinate axis for the cell. The start/end

of the cell is such that the distance from the end of the BPM

block to the corresponding end of the cell is the same on

either side of the cell.

The transition function fT is of the form

fT (x) =
1

2
+

(
x −

1

2

)∑
k=0

ak

(
2k

k

)
xk(1 − x)k (5)

where we will determine the coefficients ak that give the best

behavior. Since fT (1− x) = f (x), the average angle per cell

is half the arc cell bend angle, which simplifies the design

process by allowing the total bend angle to remain invariant

as the ak are varied. fT (0) = 0 and fT (1) = 1 if a0 = 1.

If a0 through an are 1, the function will have n continuous

derivatives at x = 0 and x = 1.

Figure 8: Jstr(E) for the transition using the taper parameters,

using a hard edge model.

f T
x

x

Figure 9: fT (x) used for the transition. Dots show the values

used for the individual transition cells.

Since the phase advance is larger at lower energies, better

continuity in the function will lead to smaller Jstr for lower

energies. However, higher degrees of continuity at x = 0 and

x = 1 require a steeper rise in the function around x = 1/2,

thus arbitrarily improving continuity at the ends will not im-

prove the transition performance indefinitely. Furthermore,

at higher energies, where the phase advance is lower and

Table 4: ak in fT used for the transitions.

a0: 1.000 a1: 0.894 a2: 0.659 a3: 0.329
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Table 5: Magnet types used in the FFAG return line, and

horizontal positions, relative to the physical magnet center,

of where their integrated fields are zero.

BD: 27.642 mm BDT2: 24.080 mm

QD: 0.000 mm BDT1: 9.629 mm

Figure 10: Tunes for a periodic cell, with angles, lengths,

magnet displacements, and gradients for a hard edge model

varied linearly as described in the text. Parameters vary from

arc parameters to straight parameters. Computation is done

using the hard-edge model described in the text.

therefore the system becomes less adiabatic, using the co-

efficients ak as adjustable parameters allows one to reduce

the maximum Jstr over the entire energy range.

The linear variation in the parameters results in tunes that,

rather than lying directly between the tunes for the arc and

the straight, wander somewhat further from those tunes for

intermediate values of fT (Fig. 10). However, attempting

to instead keep the tunes (or the traces) on a straight line

between those of the arc and the straight results in a transition

with significantly worse Jstr(E). It appears this is because

there is a focusing term which is proportional to the square

of the angle, and thus when the angle varies linearly in fT ,

the focusing effect changes more rapidly at the arc end than

the straight end.

In practice, we don’t choose parameters that give the ab-

solute minimum for the maximum Jstr over the energy range

for a couple reasons. First, we prefer to ensure adiabatic

reduction in Jstr at lower energies rather than adjusting pa-

rameters for the absolute minimum at higher energies; this

allows lower energies to in a sense take care of themselves

without being dependent on the precise choice for the ai and

fine-tuning by correctors. Second, because the doublet is

not reflection symmetric in the longitudinal direction, the

two transitions behave somewhat differently, and thus the

optimal coefficients are somewhat different for the two tran-

sitions. However, they are close enough that it is reasonable

to choose the same coefficients for both transitions, and the

penalty for doing so is small.

The coefficients were optimized using a hard-edge ap-

proximation to the lattice that attempts to give a good ap-

proximation to the low and high energy tunes and orbits.

The tunes and the orbit positions at the center of the long

pipe are matched at the low and high energy by adjusting

quadrupole and dipole fields of the hard edge model, as well

as adding thin quadrupoles to the magnet ends, offset so they

have the same zero field axis as the magnet they correspond

to. The drift lengths are adjusted as described above, and

the modeled quadrupole gradients and the offset of the zero

field axis are adjusted using fT as well (note the gradients

of the real magnets do not change). The resulting Jstr(E)

is shown in Fig. 8, with the fT used shown in Fig. 9. The

corresponding ak are shown in Table 4.

Discrete Magnet Types

The FFAG beamline uses the same focusing quadrupole

throughout, but four distinct types of defocusing magnets,

shown in Fig. 11. While all the defocusing magnets have

the same integrated gradient, they have different integrated

fields on-axis, or equivalently, a different horizontal position

where the integrated field is zero. The horizontal positions

where the integrated fields are zero for the different magnet

types are shown in Table 5. BD is used in the arc, QD in the

straight, and BDT1 and BDT2 are used in the transition.

The horizontal positions of BDT1 and BDT2 are

changed depending on which cell the magnets are in, so

as to have the position of the zero axis vary as described

in Eq. (4). We use BDT2 when fT > 0.64 and BDT1 for

fT < 0.64 so that, for each magnet the positive and negative

shifts are approximately equal (the result is 10 BDT2 and

14 BDT1 magnets per transition). The resulting Jstr(E) is

shown in Fig. 12. As can be seen, the performance of the

transition is significantly worse with the maps. The under-

lying reason is that two different magnet types, placed with

their zero-field axes in the same location, do not behave

precisely the same. A simple example of the problem is

shown in Fig. 13. BDT1, since it is adjacent to QD in the

transition, should ideally be an adequate replacement for

QD, where the line where the field is zero is a straight line.

But as shown in the figure, the line where the field is zero is

not precisely straight. In the QD, a particle of any energy

will enter and exit with zero angle when starting along the

axis. But in BDT1, for a particle to asymptotically start and

end parallel to the magnet axis, it must start at a different

horizontal position depending on its energy.

To attempt to correct for this, we add a systematic offset

to BDT1 and BDT2 as well as the QF magnets in the corre-

sponding sections. This function will be linear in fT for the

corresponding section:

Δx( fT ) = Δx( f0)
f1 − fT

f1 − f0
+ Δx( f1)

fT − f0

f1 − f0
(6)
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Figure 11: Magnet blocks, longitudinal direction perpendicular to the page, for the four magnet types used in the FFAG

beamline. From left to right from largest to smallest magnitude central dipole field: BD, BDT2, BDT1, QD. Color is chosen

based on the angle of the block magnetization with respect to the radial direction. All magnets are drawn to the same scale.

Figure 12: Jstr(E) for TA. “Design” is for the hard edge

model, and is the same as Fig. 8. “Uncorrected” is with

field maps, when fT alone is used to position the magnets.

“Systematic Correction” applies an additional systematic cor-

rection to each magnet type as described in the text. “Also

Correctors” additional applies correctors on the QF mag-

nets in the transition to make Jstr(E) be zero at the design

energies.

B
y

Figure 13: Points along a line where By = 0 in the midplane

of BDT1. Colors show gradient along that line.

For the end point in the middle, we use 0.64. The values of

Δx for the focusing and defocusing magnets at the end points

for each transition section with a given defocusing magnet

type (8 values in all) are adjusted to minimize the maximum

Jstr(E) over the energy range. The resulting offsets are at

most 190 μm, and the corresponding Jstr(E) are shown in

Fig. 12.

Applying Dipole Correctors

Dipole correctors can be applied to get the design energies

precisely correct. The goal of the taper is to bring Jstr(E) as

close as possible to zero over the full energy range, to reduce

the required corrector strengths required to zero Jstr(E) at

the design energies, and to make the design robust against

systematic errors. The correctors are then applied on top of

this, and the required strengths should be small.

To compute the corrector strengths, we used an iterative

algorithm where a matrix computing the response of x and

px at the straight for the design energies to changes in dipole

corrector strengths is computed. Using this matrix, a lin-

ear computation is made to determine approximately the

changes in corrector strengths that would zero Jstr(E) at the

design energies, while minimizing the sum of the squares

of the changes in the corrector strengths. Starting with the

corrector strengths at zero, this algorithm is repeated until

the Jstr(E) are zero at the design energies; in fact, one step

of the algorithm gives a more than adequate estimate. The

resulting Jstr(E) is shown in Fig. 12. The maximum required

corrector strength is 16 μT m.
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