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Abstract  
The design of beamlines for VUV and X-ray FEL 

facilities requires a detailed knowledge of the coherent 
radiation source. Time dependent simulations with FEL 
codes like GENESIS provide the electric field distribution 
at the end of the FEL which represents the complete 
information. Ray tracing codes used to transform the light 
from the source to the sample are generally based on 
geometrical optics and do not include directly the 
coherent properties of the FEL radiation. On the other 
hand Fourier optic techniques are usually applied to the 
propagation across normal incidence optics. We present 
an algorithm based on physical optics which permits the 
propagation of wavefronts across grazing incidence optics 
including interference effects, diffraction, polarization 
variation and pulse lengthening. Examples are given for 
the proposed BESSY Soft X-Ray FEL and a 3rd 
generation storage ring beamline. 

INTRODUCTION 
The next generation of synchrotron radiation facilities 

is based on FEL sources. The radiation properties are 
superior to those of storage rings in many aspects. The 
peak brightness overcomes the numbers of third 
generation machines by 10 orders of magnitude; the pulse 
length is in the fs-regime; the light is transversely 
coherent (SASE [1], [2], [3] and HGHG [4]) and 
longitudinally coherent (HGHG).     

The photon beam quality depends strongly on the 
parameters of the electron gun, the linac and the FEL 
undulators. Extensive start-to-end simulations have been 
performed at various laboratories to estimate the radiation 
properties at the end of the last undulator module 
including tolerances. 
Table 1: Comparison of geometrical and physical optic 
codes. 

 geometrical 
optic 

physical 
optic 

total intensity yes yes 
brightness yes yes 
field amplitudes no yes 
diffraction limited 
source 

no yes 

diffraction effects of 
beamline 

indirect yes 

polarization modulation 
in beamline 

no yes 

time structure indirect yes 
 
The user of an FEL facility will be interested in the 

beam quality at the experiment. Consequently, the start-
to-end simulations have to be extended to include also the 
beamline. Ray tracing codes used in the past are generally 

based on geometrical optics. These codes can not simulate 
directly the important coherent properties of the FEL 
radiation. 

In this paper we will present the physical optics code 
PHASE which has been written over the last years at 
BESSY. Table 1 shows the advantages of physical optics 
codes with respect to geometrical optics codes.  

In the next section the propagation of radiation in 
normal incidence geometries is described. Then, a matrix 
formalism is presented which permits the propagation 
through grazing incidence optics. The simulation of the 
time dependence which has recently been added to the 
code will be explained in more detail. Next, a few details 
to the code PHASE are discussed and finally, examples 
for various aspects of the radiation propagation are 
presented. 

FREE SPACE PROPAGATION AND 
NORMAL INCIDENCE OPTICS 

 
Figure 1: Principle layout of a normal incidence optic. 

For monochromatic waves the electric field distribution 
in a plane perpendicular to the direction of propagation 
completely defines the properties of the radiation 
(Huygens’ construction). The wavefront can be 
propagated by a direct integration of the equation of 
Fresnel and Kirchhof (eq.1) which is, however, time 
comsuming. 
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Alternatively, in Fourier optics [5] the original field 
distribution is Fourier transformed to obtain plane waves 
with different angles. The drift Δx is applied by 
multiplication of an appropriate phase factor. A Fourier 
back transformation yields the field distribution at the 
new location (eq.2-4). 
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Normal incidence optical elements (lens, zone plate, 
aperture etc.) are introduced by multiplication of an 
appropriate complex matrix in real space. 

The fractional frequency bandwidth of the new soft X-
ray and  X-ray FELs is typically a few 0.001. To take this 
into account the simulations have to be performed for 
various frequencies. The time dependent FEL code 
GENESIS [6] provides the complex electric field vectors 
on a transverse grid. In the time dependent mode a large 
number of slices represents the time evolution of the 
electric fields at each grid point. Before starting the 
wavefront propagation the time dependent electric fields 
E(t) have to be converted to frequency dependent 
variables (E(ω)) via a Fourier transformation for each 
individual grid point. Equations 2-4 are applied 
successively to the transverse field distributions of each 
frequency and finally, the result is back transformed to 
time space. 

GENESIS evaluates photon beam properties at the end 
of the FEL where the radiation is already divergent. 
Following the described procedure these data can be 
propagated in order to derive information on the effective 
location of the photon beam waist and the size of the 
phase space [7]. 

GRAZING INCIDENCE OPTICS 
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Figure 2: Coordinate system and definition of variables.  

In this section we will briefly describe the formalism of 
the physical optics code PHASE. For detailed information 
we refer to [8], [9] 

The propagation of an electric field distribution is given 
by eq. 5 using the propagator h where b is the 
transmittance of the optical element. 

 ∫ ⋅⋅= adaEaahaE )(),'()'(  (5) 

dldwlwb
rr

rrikaah
Surface

⋅⋅⋅⋅+= ∫ )cos(),(
'

))'(exp(1),'( 2 α
λ  

The integration is performed over the complete surface 
of the optical element. For a combination of several 
optical elements it is advantageous to substitute the 
source coordinates ( ),( yza =r ) with the divergencies in 
the image plane (eq.6).  
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The propagator for two optical elements is given by an 
integral over the product of two individual propagators of 
the two elements (eq.7). 

 ∫ ⋅⋅= '),'()',''(),''( 12 adaahaahaah  (7) 

The number of dimensions for integration increases 
with the number of elements and an approximation is 
required to restrict the computation time to reasonable 
values. For typical grazing incidence optics at 
synchrotron radiation light sources the propagator of one 
optical element can be simplified applying the stationary 
phase approximation [10]. The principle of this 
approximation is the following: i) the asymptotic behavior 
( ∞→k ) of the integral of the propagator h in eq.5 is 
completely defined by the behavior of the integrand at the 
critical points. The critical points of the first kind are 
locations where the first derivatives of 'rr +  with 
respect to w and l are zero (the second derivatives are non 
zero) and the critical points of the second kind are the 
points on the boundary, where the derivative of 'rr +  
along the boundary is zero. ii) the leading term in the 
asymptotic expansion is the contribution from the critical 
points of the first kind, if there are any. This term for one 
critical point is shown in eq.8, where the distances r0 and 
r0’ refer to the paths lengths to the critical point. The 
integrals can be solved analytically if the integration 
limits are set to infinity. 
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The expressions c1 and c2 contain the derivatives of the 
optical path length p with respect to the surface 
coordinates w and l at the critical points. With this 
simplification eq.5 reduces to eq.9. The dimensions of 
integration have been reduced from 4 to 2. 

α
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We assume that for most of the relevant geometries the 
critical points of the first kind are well separated (figure 
3). Then, the leading term of the expansion described by 
eq.8 is sufficient. This term has been implemented into 
PHASE. If necessary, higher order terms will be 
implemented in the future as well.   

Figure 3: Cosine of the optical path versus the optical 
element coordinate w for a demagnifying mirror. The fast 
oscillating amplitudes do not contribute to the integral.   

In [10] an analytic expression for the leading term of 
the contributions from the critical points of the second 
kind is given. This expression is, however, not 
implemented into PHASE because it is assumed that in 
most cases the optical elements do not scrape the photon 
beam. In cases where this assumption is not true the 
propagation has to be split into two steps where the beam 
is propagated from the source to an aperture in front of 
the limiting element and then, propagated to the image 
plane.   

Replacing the surface coordinates (w, l) in the optical 
path with coordinates of the source and the image plane 
(eq.10) we get the equation of propagation across one 
element. 
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Based on these expressions a fourth order 
transformation map between the image coordinates (yf, zf, 
dyf, dzf) and the source coordinates (yi, zi, dyi, dzi) is 
generated. Using the expansion coefficients a 70x70 
transformation matrix for the transformation of all 
coordinates and angles as well as all cross products is 

established. The generally nonlinear transformation of the 
coordinates and angles can now be expressed by a linear 
operation (eq.11).   
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The transformation across several optical elements is 
simply described by the product matrix of all individual 
matrices (eq.12). 
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POLARIZATION ANALYSIS 
The polarization properties of the final field distribution 

is analyzed via a projection of the field vectors onto the 
projection vectors S

r
 (see eq.13). The resulting intensities 

can then be converted to the well known Stokes 
parameters.  
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TIME DEPENDENT SIMULATIONS 

 
Figure 4: Pulse lengthening at a transmission grating. 

The short time structure of the HGHG FEL-radiation 
can be spoiled within a beamline. Optical aberrations can 
cause path length differences. The effects are, however, of 
minor importance for low divergent FEL-beams. The 
influence of a grating can be significant. In geometrical 
optics the path length difference ΔL(Δy) (figure 4) causes 
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a pulse lengthening of ΔT=Nλ/c where N is the number of 
illuminated lines and c is the velocity of light. In physical 
optics the wavefront experiences a phase variation of   
ΔФ = f (Δy) where Δy characterizes the displacement in 
the dispersion direction: 
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The Fourier transformation of this product is the 
convolution of the time dependent field distribution with 
a δ-function (eq.15) which is equivalent to the result in 
geometrical optics. 
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Monochromatic waves are infinitely long. To simulate 
time dependent effects the simulations have to be 
extended to a set of frequencies. Assuming only minor 
phase variations within the FEL-pulse the radiation can be 
approximated by eq.16. 
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The electric field distribution E0(z,y) is extracted from 

a time independent FEL-simulation and g(t) has a 
rectangular (or smoothed rectangular) shape to simulate 
the time structure. This approximation might be justified 
for idealized HGHG radiation which is longitudinally 
fully coherent.  

For detailed simulations, however, a set of electric field 
distributions at various locations within the electron 
bunch has to be used. The number of slices depends on 
the time structure and the phase variation within the 
bunch. Obviously, many more slices are needed for a 
SASE case as compared to a HGHG case (see figure 5a-
b). 
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Figure 5a: Time structure of the HGHG based BESSY 
LE-FEL. 
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Figure 5b: Time structure of a SASE FEL.  

The simulation procedure is similar to the one for 
normal incidence optics. A Fourier transformation of the 
time dependent data provides the frequency distributions. 
Each frequency slice is propagated using a physical optics 
code. The results are Fourier back transformed providing 
the time structure behind the beamline.   

THE PHYSICAL OPTICS CODE PHASE 
The equations discussed above have been implemented 

into the code PHASE. The code is written partly in 
FORTRAN and partly in C. The power series expansions 
have all been evaluated using the algebraic code 
REDUCE [11] which automatically generates FORTRAN 
code. The graphics are realized with the PAW package of 
the CERN library. The mouse driven user interface is 
based on the Motif library. The code runs on a LINUX 
platform. 

After the geometries and optical elements have been 
defined the parameters are checked and optimized in the 
fast running ray tracing mode (geometrical optic). Slope 
errors as well as misalignments of the optical elements 
can be taken into account. The code provides the 
possibility to automatically minimize any linear 
combination of matrix elements of the transformation 
map (optical aberrations) by variation of defined 
geometry or mirror parameters. Once, the beamline 
parameters are fixed, one switches to the physical optics 
mode and performs the propagation for the defined 
parameter set. 

The representation of the source is a key issue in order 
to keep the CPU time low. A typical electric field 
distribution (real and imaginary part) for the spontaneous 
radiation of an undulator is given in figure 6, top. 

The fast oscillating quantities require a fine mesh for 
integration. The fields can be converted to amplitudes and 
phases. The discontinuities of the phase distribution can 
be removed by an appropriate addition of multiples of 2π 
(figure 6, bottom). In this representation the mesh size can 
be larger which significantly reduces the CPU time. 

Even with optimized integration parameters a time 
dependent  simulation run typically takes several hours on 
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a single CPU machine. For the simulation of a SASE FEL 
it will be necessary to run the code on a multi CPU 
LINUX cluster. The code is suitable for being parallelized 
since each frequency is independently simulated. 

 
Figure 6: Electric field distribution of a spontaneous 
undulator source (top) and an equivalent amplitude and 
phase representation of the same source (bottom). 

EXAMPLES 

Time Dependent Calculations 
The proposed BESSY HGHG based Soft X-Ray FEL 

facility consists of three independent FEL lines covering 
the energy regime from 24eV up to 1keV. The FELs are 
seeded with a Ti:Sapphire laser which determines the 
pulse length of about 30fs. In case of the high energy FEL 
the laser wavelength has to be up-converted by a factor of 
225 within 4 HGHG stages. The signal to noise ratio 
decreases quadratically with the harmonic number. A 
seeding monochromator behind the first stage can 
significantly improve the photon beam quality [12-13]. 
The seeding monochromator cleans the spectrum 
transmitting only the central frequency with a nearly 
Fourier limited bandwidth without lengthening the pulse 
duration.  

At 24eV a conventional monochromator with one 
grating would introduce an unacceptable pulse 
prolongation. Therefore, a dispersion-less double 
monochromator with a so called 4f-design [12,14] has 
been proposed. The monochromator consists of two parts 
which are symmetrically arranged (figure 7). The pulse 
prolongation of the first grating is compensated with the 
second grating which operates in opposite order as 
compared to the first grating. The frequency is selected by 
simultaneously rotating both gratings. The bandwidth is 
controlled via the intermediate slit. 

In the following we will demonstrate the wavefront 
propagation method for this seeding monochromator 
operating at an energy of 24eV. 
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Figure 7: Layout of the seeding monochromator for the 
BESSY high energy FEL. The monochromator is located 
behind the first HGHG stage. 

For a realistic representation of the longitudinal and 
transverse properties 840 time slices with a separation of 
one optical wavelength have been generated with 
GENESIS. These data have been Fourier transformed. For 
the PHASE simulations it was sufficient to track only 40 
frequencies (figure 8) because the variations over the 
pulse length are only moderate. For a SASE field it is 
expected that the number of frequencies is about two 
orders of magnitude larger. 
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Figure 8: Spectral distribution of the input pulse. The 
frequencies used for the simulations are marked.  

Figure 9 demonstrates a significant pulse lengthening 
behind the first two elements of the monochromator. For 
comparison the results for a toroidal mirror with a strong 
demagnification are plotted (184° total deflection angle, 
r=20000mm, r’=1000mm). The time structure is not 
significantly affected in this case which is due to the 
small divergence of the beam.  
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For an open intermediate slit the spectral width is 
identical to the width at the exit of the first FEL stage 
(figure 10). A reduction of the slit height to 20μm reduces 
the spectral width by a factor of three. 
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Figure 9: Time structure of the FEL-pulse at the exit of 
the final amplifier (black) and at the intermediate slit of 
the seeding monochromator (magenta). For comparison 
the time structure behind a toroidal mirror with a 
demagnification of 20:1 is plotted as well (blue). 
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Figure 10: Spectral width at the intermediate slit for slit 
open (black) and slit closed to 100, 50 and 20μm (red). 

As demonstrated in figure 11 the time structure at the 
symmetry point of the monochromator depends on the 
vertical position (dispersion direction). To a certain extent 

this provides a knob for coherent control using specially 
formed slit plates.   
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Figure 11: Time structure at the intermediate slit plane 
(figure 7) at various vertical positions (black: below, red: 
above midplane) and the sum of all contributions 
(magenta, this intensity not to scale). 
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Figure 12: Time structure of the original pulse (black), the 
pulse at the monochromator exit with intermediate slit at 
300μm (red) and closed to 100 and 50μm (blue). 

In a second step the complex electric field distribution 
at the intermediate slit has been used as a source for the 
propagation across the second half of the monochromator. 
With the central slit set to 300μm the original pulse width 
is nearly recovered (figure 12). The differences between 
the two curves can be explained by the diffraction at the 
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slit and by the limited width of the time window which 
has been used. The intensity does not drop to zero in 
figure 9 which gives rise to numerical noise. Closing the 
central slit the divergence of the radiation gets larger due 
to diffraction. The number of illuminated lines increases 
and, hence, the pulse is getting longer (figure 12). 

In [12] it is pointed out that a slit height of 300μm 
enhances the output power and reduces the bandwidth at 
the end of the complete FEL significantly. The influence 
of smaller slit sizes which must not scrape the Fourier 
limited part will be subject to further studies.     

 Following the described procedure the properties of 
the monochromators behind the final amplifiers of the 
three BESSY FEL lines will be studied in the future. 
Another monochromator in 4f geometry is planned behind 
the final amplifier of the low energy FEL [4]. Due to the 
smaller wavelengths the monochromators for the medium 
and high energy FEL provide the possibility to control the 
pulse length and bandwidth by adjusting the angle of 
incidence at the grating and thus the number of 
illuminated lines [4].  

Polarization Effect 
Many experiments benefit from the variable 

polarization of the synchrotron radiation. Modern 
insertion devices (e.g. of APPLE type) provide any 
arbitrary state of polarization. The user is interested in the 
polarization properties at the sample. Therefore, the 
polarization properties have to be transformed correctly 
through the beamline. 

The state and degree of polarization is not constant but 
may change throughout the beamline. This will be 
demonstrated for the example of a double undulator. 
Double undulators are needed for fast helicity switching. 
One undulator provides right handed and the other one 
left handed circularly polarized light. A fast chopper 
downstream of the beamline or alternatively, an aperture 
in combination with a periodic displacement of the 
electron beam separates the two light cones with high 
frequencies. Double undulators are installed at various 
third generation storage rings (ESRF, BESSY, SLS, 
SPRING8 [15-18]). At the SLS the undulator segments 
are transversally displaced. The principle layout is plotted 
in figure 13. 

 

 
Figure 13: Layout of the SLS double undulator. 

Figure 14 shows the parameters S2 and S3 in the focal 
plane. The two light cones are well separated and can be 
chopped. Out of focus (figure 15) the two light cones are 
smeared and a significant S2 component shows up. Such 
simulations are useful to determine the optimum position 
of the chopper.    

 
 

 
Figure 14: S2 (top) and S3 (bottom) component of the 
double undulator radiation at the focal point. 

 

 
 

 
 

Figure 15: S2 (top) and S3 (bottom) component of the 
double undulator radiation upstream of the focal point. 
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CONCLUSION 
The radiation properties of the new soft X-ray and X-

ray FEL facilities are quite different compared to third 
generation light sources. The simulation of short pulses as 
well as transverse and longitudinal coherence requires 
new techniques which go beyond the features of 
conventional ray tracing codes. We presented a general 
approach based on physical optics which is appropriate to 
simulate the FEL properties. Realistic transverse and 
longitudinal pulse characteristics can be taken into 
account. Using the described procedures the dependence 
of the pulse length and the spectral width of a seeding 
monochromator have been studied. In a second example 
the polarization properties within a beamline behind a 
double undulator for fast helicity switching has been 
simulated. The technique implemented into the code 
PHASE is already well suited to cope with the specific 
radiation properties of HGHG FELs. For SASE FELs the 
code has to be adapted to a multi CPU cluster to keep the 
computation time within reasonable limits.   

REFERENCES 
[1] TESLA-Technical Design Report, TESLA X-FEL, 

Technical Design Report, 2002-9, 2002. 
[2] Linac Coherent Light Source (LCLS), Conceptual 

Design Report, SLAC-R-593, 2002. 
[3] T. Shintake, Nucl. Instr. and Meth., A507 (2003) 382-

397. 
[4] The BESSY Soft X-ray Free Electron Laser, 

Technical Design Report March 2004, eds.: D. 

Krämer, E. Jaeschke, W. Eberhardt, 
ISBN 3-9809534-08, BESSY, Berlin (2004). 

[5] J. W. Goodman, “Introduction to Fourier Optics”, 
McGraw-Hill Physical and Quantum Electronics 
Series, New York, 1968. 

[6] S. Reiche, GENESIS 1.3, Nucl. Instr. Meth. A 429 
(1999) 243. 

[7] Meseck et al., these proceedings. 
[8] J. Bahrdt, Applied Optics, 34 (1995) 114-127.  
[9] J. Bahrdt, Applied Optics, 36 (1997) 4367-4381. 
[10] L. Mandel, E. Wolf, “Optical Coherence and 

Quantum Optics”, Cambridge University Press, 1995. 
[11] A. C. Hearn, “REDUCE 3.5, A General Purpose 

Algebra System” [RAND, Santa Monica, Calif. 
90407-2138 (reduce@rand.org), 1993]. 

[12] M. Abo-Bakr et al., these proceedings. 
[13] K. Goldammer, M. Abo-Bakr, R. Follath, A. Meseck, 

these proceedings. 
[14] D. Goswami, Phys. Rep. 374/6 (2003) 385; 
[15] P. Elleaume, J. Synchr. Rad. 1(1994) 19-26; 
 P. Elleaume, Nucl. Instr. and Meth., A304 (1992) 

719-724. 
[16] J. Bahrdt et al., Nucl. Instr. and Meth., A467-468 

(2001) 21-29. 
[17] C. Quitman et al., Surface Science, 480 (2001) 173-

179. 
[18] T. Hara et al., J. Synchr. Rad., 5 (1998) 426-427; 
 T. Hara et al., Nucl. Instr. and Meth., A498 (2003) 

496-502. 

 

Proceedings of the 27th International Free Electron Laser Conference

21-26 August 2005, Stanford, California, USA 701 JACoW / eConf C0508213


