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Abstract

Recent theoretical and experimental studies have shown
that SASE FEL with a planar undulator holds a potential
for generation of relatively strong coherent radiation at the
third harmonic of the fundamental frequency. Here we
present detailed study of the nonlinear harmonic genera-
tion in SASE FEL obtained with time-dependent FEL sim-
ulation code FAST. Using similarity techniques we present
universal dependencies for temporal, spectral, and statisti-
cal properties of the third harmonic radiation from SASE
FEL. In particular, we derived universal formulae for radi-
ation power of higher harmonics at saturation. It was also
found that coherence time at saturation falls inversely pro-
portional to harmonic number, and relative spectrum band-
width remains constant with harmonic number.

INTRODUCTION

During last years a significant efforts of researchers have
been devoted for studying the process of the higher har-
monic generation in the high-gain free electron lasers [1]-
[11]. Such an interest has been mainly driven by practical
needs for prediction of the properties of X-ray free elec-
tron lasers. Analytical techniques have been used to pre-
dict properties of the higher harmonics for FEL amplifier
operating in the linear mode of operation [8, 9]. However,
the most fraction of the radiation power is produced in the
nonlinear regime, and a set of assumptions needs to be ac-
cepted in order to estimate saturation power of higher har-
monics on the base of extrapolation of analytical results.
A lot of studies has been performed with numerical sim-
ulation codes. These studies developed in two directions.
The first direction is investigations of higher harmonic phe-
nomena by means of steady-state codes [4, 5, 6, 7]. De-
spite the results of these studies are applicable to externally
seeded FEL amplifiers only, it is relevant to appreciate that
they gave the first predictions for high radiation power in
higher harmonics of SASE FEL [2, 4]. Another direction
was an extraction of time structure for the beam bunching
from time-dependent simulation code with subsequent use
of analytical formulae of the linear theory [8]. Giving an
estimate for the power, such an approach does not allow to
describe statistical properties of the output radiation.

In this paper we perform comprehensive study of the sta-
tistical properties of the odd harmonic radiation from SASE
FEL. The study is performed in the framework of one-

dimensional model with time-dependent simulation code
FAST [12, 13] upgraded for simulation of higher harmonic
generation. We restrict our study with odd harmonics pro-
duced in the SASE FEL. We omit from consideration an
effect of self-consistent amplification of the higher harmon-
ics. In other words, we solve only electrodynamic problem
assuming that particle motion is governed by the funda-
mental harmonic. The latter approximation is valid when
power in higher harmonics is much less than in the funda-
mental. This does not limit practical applicability of the
results: it has been shown in earlier papers that the growth
rate of higher harmonics is too small to produce visible in-
crease of the coherent amplification above shot noise in X-
ray FELs [8]. Under this approximation and using simi-
larity techniques we derive universal relations describing
general properties of the odd harmonics in the SASE FEL:
power, statistical and spectral properties. The results are
illustrated for the 3rd and 5th harmonic having practical
importance for X-ray FELs.

BASIC RELATIONS

The one-dimensional model describes the amplifica-
tion of the plane electromagnetic wave by the electron
beam in the undulator. When space charge and en-
ergy spread effects can be neglected, operation of an
FEL amplifier is described in terms of the gain param-

eter Γ =
[
πj0K

2
1/(IAλwγ3)

]1/3
, efficiency parameter

ρ = λwΓ/(4π), and detuning parameter Ĉ = [2π/λw −
ω(1 + K2/2)/(2cγ2)]/Γ (see,e.g. [13]). Here K1 is cou-
pling factor of the radiation to the first harmonic h = 1,
Kh = K(−1)(h−1)/2[J(h−1)/2(Q) − J(h+1)/2(Q)], and
Q = K2/[2(1 + K2)]. Other parameters of the electron
beam, undulator and radiation are: λw is undulator period,
K = eλwHw/2

√
2πmc2 is rms undulator parameter, γ is

relativistic factor, Hw is undulator field, j0 is the beam cur-
rent density, (−e) and m are charge and mass of electron,
IA = mc3/e � 17 kA, and ω is frequency of electromag-
netic wave. When describing start-up from shot noise, one
more parameters of the theory appears – number of parti-
cles in coherence volume, Nc = I/(eρω), where I is beam
current.

Main advantage of accepted approximation (particle’s
dynamics is governed by the fundamental harmonic) is that
we can factorize coupling of the harmonics of the radia-
tion and relevant time-dependent integrals of the harmonic

Proceedings of the 27th International Free Electron Laser Conference

21-26 August 2005, Stanford, California, USA 51 JACoW / eConf C0508213



of the beam bunching. Thus, with omission of a common
factor, complex amplitude of electric field of harmonic is

Eh(z, t) ∝ Kh

z∫

0

ah(z′, t− (z − z′)/c)dz′ ,

where ah is h-th harmonic of the beam bunching. Subse-
quent application of similarity techniques allows us to ex-
tract universal dependencies from numerical simulations.

RADIATION PROPERTIES

The input parameter of the system is the number of co-
operating electrons Nc. A typical range of the values of Nc

is 106–109 for the SASE FELs of wavelength range from
X-ray up to infrared. The numerical results, presented in
this paper, are calculated for the value Nc = 3×107 which
is typical for a VUV FEL. Note that the dependence of the
output parameters of the SASE FEL on the value of Nc is
rather weak, in fact logarithmic [13]. Therefore, the ob-
tained results are pretty general and can be used for the es-
timation of the parameters of actual devices with sufficient
accuracy.

A plot for the averaged power of the 1st harmonic is
shown in Fig 1 with a solid line (normalized power of h-th
harmonic is defined as η̂h = Wh × (K1/Kh)2/(ρWb)).
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Figure 1: Top: normalized averaged power of a fundamen-
tal harmonic of SASE FEL, η̂1 = P1/(ρPbeam), normal-
ized power ratio, η̂h/η̂1 = (Wh/W1) × (K1/Kh)2, for
the 3rd and 5th harmonic. Bottom: Normalized rms de-
viation of the fluctuations of the instantaneous radiation
power. Solid, dashed, and dotted lines correspond to the
fundamental, 3rd, and 5th harmonic, respectively
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Figure 2: Ratio of coupling factors, (Kh/K1)2, for the 3rd
(solid line) and the 5th (dashed line) harmonics with re-
spect the fundamental harmonic versus rms value of undu-
lator parameter Krms
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Figure 3: Normalized power ratio at saturation,
(Wh/W1) × (K1/Kh)2, for the 3rd (solid line) and
5th (dashed line) harmonic as a function of energy spread
parameter Λ̂2

T. SASE FEL operates at saturation

Saturation is achieved at the undulator length ẑ = 13.
Dashed and dotted lines show a normalized power ratio,
η̂h/η̂1 = (Wh/W1) × (K1/Kh)2, for the 3rd and the 5th
harmonic. One can notice that power of the higher har-
monics becomes to be above the shot noise level only in
the end of linear regime. This becomes clear if one takes
into account that the shot noise level of the beam bunching
is about 1/

√
Nc, and is rather high [8]. For the saturation

we find a universal formulae for the power of the 3rd and
5th harmonic:

〈W3〉
〈W1〉 = 0.094× K2

3

K2
1

,
〈W5〉
〈W1〉 = 0.03× K2

5

K2
1

. (1)

Universal functions for the ratio (Kh/K1)2 are plotted in
Fig. 2. Asymptotictic values for at large value of undulator
parameter are: (K3/K1)2 � 0.22, and (K5/K1)2 � 0.11.
Thus, we can state that contribution of the 3rd harmonic
into the total radiation power of SASE FEL at saturation
could not exceed a level of 2%. Thus, its influence on the
beam dynamics should be small. This result justifies a basic
assumption used for derivation of a universal relation (1).
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Figure 4: Probability distribution of instantaneous radia-
tion power from SASE FEL operating in saturation regime
at ẑ = 13. Upper and lower plots correspond to the funda-
mental and 3rd harmonic, respectively

A contribution of the 5th harmonic into the total power at
saturation could not exceed the value of 0.3%.

Another important topic is an impact of the electron
beam quality on the nonlinear harmonic generation pro-
cess. In the framework of the one-dimensional theory
this effect is described with the energy spread parameter
Λ̂2

T = 〈(ΔE)2〉/(ρ2E2
0) where 〈(ΔE)2〉 is the rms energy

spread. Result given by (1) for the case of ”cold” elec-
tron beam is generalized with the plots presented in Fig. 3.
We see that the energy spread in the electron beam sup-
presses power of the higher harmonics. Within practical
range of Λ̂2

T this suppression can be about a factor of 3 for
the 3rd harmonic, and about an order of magnitude for the
5th harmonic. Note that typical range of the effective en-
ergy spread parameter (taking into account energy spread
and emittance, see, e.g., [13]) for X-ray FELs is covered
by the plot in Fig. 3. The saturation length at Λ̂2

T = 0.5 is
increased by a factor of 1.5 with respect to the ”cold” beam
case Λ̂2

T = 0.
Instantaneous radiation power is subjected to fluctua-

tions because start-up from shot noise. In Fig. 1 we show
the normalized rms deviation of the instantaneous radia-
tion power, σw = 〈(W − 〈W 〉)2〉1/2/〈W 〉, as a function
of the undulator length. The next step in our investigation
is the behavior of the probability density distribution of
the instantaneous power. In the linear stage of amplifica-
tion the radiation of the fundamental harmonic is described
with Gaussian statistics. As a result, the probability distri-
bution of the instantaneous radiation intensity W should
be the negative exponential probability density distribu-

tion p(W ) = exp (−W/〈W 〉) /〈W 〉 [13, 14]. The same
refers to the higher harmonics when the shot noise domi-
nates above the process of nonlinear harmonic generation.
When the latter process becomes to be dominant the statis-
tics of the high-harmonic radiation from the SASE FEL
changes significantly with respect to the fundamental har-
monic (e.g., with respect to Gaussian statistics). In this case
the probability density function p(W ) of the fundamen-
tal intensity is subjected to a transformation z = (W )h.
It can be readily shown that this probability distribution
is p(z) = z(1−h)/h exp(−z1/h/〈W 〉)/(h〈W 〉) [15]. Us-
ing this distribution we get the expression for the mean
value: 〈z〉 = h!〈W 〉h. Thus, the hth-harmonic radiation
for the SASE FEL has an intensity level roughly h! times
larger than the corresponding steady-state case, but with
more shot-to-shot fluctuations compared to the fundamen-
tal [8]. Note that this regime of nonlinear harmonic genera-
tion which can be described with analytical techniques hap-
pens only in the end of linear regime. When amplification
process in the SASE FEL enters nonlinear regime, statisti-
cal properties of the radiation can be found only from nu-
merical simulations. Relevant probability distributions for
saturation are shown in Fig. 4. It is seen that the distribu-
tions change significantly with respect to the linear regime
for both, the fundamental and the 3rd harmonic. An impor-
tant message is that at the saturation point the 3rd harmonic
radiation exhibits much more noisy behavior (nearly neg-
ative exponential) while stabilization of the fluctuations of
the fundamental harmonics takes place.

Temporal properties of the radiation are de-
scribed in terms of the first and the second or-
der time correlation functions g1(t − t′) =

〈Ẽ(t)Ẽ∗(t′)〉/
[
〈|Ẽ(t)|2〉〈|Ẽ(t′)|2〉

]1/2

, and g2(t − t′) =

〈|Ẽ(t)|2|Ẽ(t′)|2〉/
[
〈|Ẽ(t)|2〉〈|Ẽ(t′)|2〉

]
. In Fig. 5 we

show the time correlation functions at saturation. The
nontrivial behavior of the second order correlation function
reflects the complicated nonlinear evolution of the SASE
FEL process. In classical optics, a radiation source with
g2(0) < 1 cannot exist but the case of g2(0) > 2 is pos-
sible. As one can see from Fig. 5, the latter phenomenon
(known as superbunching) occurs for higher harmonics of
SASE FEL.

In Fig. 6 we present the dependence on the undula-
tor length of the normalized coherence time τ̂c = ρω0τc,
where τc is τc =

∫∞
−∞ |g1(τ)|2 d τ . For the fundamental

harmonic the coherence time achieves its maximal value
near the saturation point and then decreases drastically. The
maximal value of τ̂c depends on the saturation length and,
therefore, on the value of the parameter Nc. With loga-
rithmic accuracy we have the following expression for the
coherence time of the fundamental harmonic (τ̂c)max �√

π lnNc/18. The coherence time at saturation for higher
harmonics falls approximately inversely proportional to the
harmonic number h.

Radiation spectra are described in terms of the normal-
ized spectral density, h(Ĉ), defined as

∫∞
−∞ d Ĉh(Ĉ) = 1.
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Figure 5: First and second order correlation functions.
SASE FEL operates in saturation regime at ẑ = 13. Solid,
dashed, and dotted lines correspond to the fundamental, 3rd
and 5th harmonic, respectively. Here τ̂ = ρω0(t− t′)
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Figure 6: Normalized coherence time of a SASE FEL as
a function of normalized undulator length. Solid, dashed,
and dotted lines correspond to the fundamental, 3rd, and
5th harmonic, respectively

The frequency deviation, Δω, from the nominal value of
ωh can be recalculated as Δω = −2ρωhĈ. Normal-
ized envelope of the radiation spectrum and the first or-
der time correlation function are connected by the relation
G(Δω) = (2π)−1

∫∞
−∞ dτg1(τ) exp(−iΔωτ) [16]. Fig-

ure 7 shows spectra of the SASE FEL radiation at satu-
ration. Note that spectrum width of the higher harmonics
from SASE FEL differs significantly from that of incoher-
ent radiation. For the case of incoherent radiation relative
spectrum width, Δω/ωh scales inversely proportional to
the harmonic number h (see, e.g. [17]). One can see that
situation changes dramatically for the case when nonlinear
harmonic generation process starts to be dominant. At sat-
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Figure 7: Normalized spectrum from SASE FEL operating
in the saturation regime. Solid, dashed, and dotted lines
correspond to the fundamental, 3rd and 5th harmonic, re-
spectively

uration we find that relative spectrum bandwidth becomes
to be nearly the same for all harmonics.
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