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Abstract 

We present a proof of principle of the novel regime of 
quantum SASE with high temporal coherence and 
discrete spectrum. Using a self-consistent system of 
Schroedinger-Maxwell equations with propagation 
effects, we show that the dynamics of the system are 
determined by a properly defined “quantum Fel-
parameter”, ρ , which represents the ratio between the 

classical momentum spread in the high gain regime and 
the one photon recoil momentum kh . In the limit 1ρ >>  

the quantum model reproduces the classical SASE regime 
with random spiking behavior and broad spectrum. In this 
limit we show that the equation for the quantum Wigner 
function reduces to the classical Vlasov equation. In the 
opposite limit, 1ρ < , we demonstrate “quantum 

purification” of SASE: the classical chaotic spiking 
behaviour disappears and the spectrum becomes a series 
of discrete very narrow lines which correspond to 
transitions between discrete momentum eigenstates, 
resulting in high temporal coherence. 

 
INTRODUCTION 

 
The Self Amplified Superradiant Emission (SASE) 

regime for a free-electron laser (FEL) is made up of three 
basic ingredients: high-gain, propagation or ’slippage’ 
effects and start-up from noise [1]. The classical steady-
state high-gain regime of FELs, with universal scaling 
and the introduction of the ρ-BPN parameter, was 
analyzed in [2], where the possibility of operating an FEL 
in the SASE regime was suggested. Other treatments 
assume that SASE is just steady state instability starting 
from noise [3,4]. This approach does not give the correct 
temporal structure and spectrum of SASE radiation as 
described in [1].   

In [5-7] it was shown that due to propagation there 
exists not only the steady-state instability of [2], but also a 
Superradiant instability, with peak intensity proportional 
to n2, where n is the electron density. This Superradiant 
instability, entirely due to slippage, is the heart of SASE, 
so that all the treatments which claim to describe SASE 
without this propagation induced instability are 
fundamentally incorrect [3,4].  

As shown in [1], a SASE FEL radiates a random 
series of Superradiant spikes because, approximately 
speaking, the electron bunch contains many cooperation 
lengths which radiate randomly and independently from 
one  

 

 
 

another. The final result is an almost chaotic temporal 
pulse structure with a broad spectral width. The number 
of spikes in the high-gain regime corresponds 
approximately to the number of cooperation lengths in the 
electron bunch. Hence, classical SASE has one drawback 
with regard to its application as a useful source of short-
wavelength coherent light: at short wavelengths many 
cooperation lengths lie within the electron bunch. This 
implies a quasi-chaotic temporal structure of the radiation 
pulse and a consequent wide spectrum. 

In this paper we propose a novel method for 
producing coherent short wavelength radiation with 
SASE by adding new features to a previous treatment [8]. 
We introduce a quantum description of SASE which 
depends on the dimensionless “quantum FEL parameter”, 
ρ , which is defined in terms of the classical ρ-BPN 

parameter as: 
 

rmc

k

γρ ρ⎛ ⎞= ⎜ ⎟
⎝ ⎠h

.                                (1) 

 
ρ  represents the ratio between the classical momentum 

spread at saturation and the one photon electron recoil. 
We show that when 1ρ >>  the SASE FEL behaves 

classically, i.e. in agreement with the SASE classical 
model. However, when 1ρ ≤ , we obtain a quantum 

regime with features completely different from those of 
the classical regime and to which we shall refer as 
Quantum SASE. A surprising feature of this regime is the 
phenomenon of “quantum purification”, in which the 
chaotic spectrum of classical SASE is replaced by a 
completely different coherent spectrum. More 
specifically, in the quantum regime one has a set of 
discrete narrow lines equally spaced due to transition 
between discrete momentum states. Increasing ρ  the 

distance between the lines decreases and their width 
increases. The classical continuous noisy spectrum is 
recovered when, increasing ρ , the lines overlap.  

In this paper we describe Quantum SASE by 
extending Preparata’s model [9] to include propagation 
effects via a multiple scaling method used in classical 
FEL theory [10]. This allows us to easily take into 
account the existence of two different space scales: the 
variation of the electron distribution on the scale of the 
radiation wavelength (describing the bunching) and the 
variation of the field envelope on the much longer scale 
of the cooperation length. 
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QUANTUM FEL MODEL 
 
The Quantum FEL (QFEL) is described by the 

following equations for the dimensionless radiation 
amplitude and the “matter wave” 1( , , )z zθΨ  :  
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The notations are well known [1,8]. In particular, z  is the 
coordinate along the wiggler in units of the gain 
length, / 4g wL λ πρ= , and 1z  is the electron coordinate 

along the bunch, in units of the cooperation length, 
/ 4c rL λ πρ= . A is the adimensional field amplitude 

defined so that 
2

Aρ  is the ratio between the photon 

density and the electron density, and δ  is the normalized 
detuning. 
     From Eqs. (2)-(3) one can show that the dimensionless 

density profile ( )
2

2

0 1

0

I z d
π

θ= Ψ∫   is independent of z  . 

This means that the space distribution of the particles 

does not change appreciably on the slow scale 1z   during 

the interaction with the radiation field. The QFEL 
equations (2) and (3) depend only on the quantum FEL 
parameter, ρ . 

The classical limit of the QFEL can be explicitly 
shown as follows. Eq.(1) can be transformed into an 
equation for the Wigner function [11,12]  
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whereas Eq.(2 ) becomes  
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where 0( ) /p mc kγ γ ρ= − h . Note that the quantum 

momentum shift of the Wigner function,1/ 2ρ , in 

dimensional units, would be / 2kh . In the right hand side 

of Eq.(4), the second line becomes 
W

p

∂
∂

 in the limit 

ρ → ∞ . Hence, for large values of ρ , Eq. (4), which is 

equivalent to Eq.(2), reduces to the classical Vlasov 
equation:  
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Eqs. (4) and (5) provide the description of the QFEL 
model in terms of the Wigner function, whereas Eqs. (5) 
and (6) are equivalent to the classical FEL model. Note 
that Eqs. (5) and (6) do not depend explicitly on ρ , as

 

must be the case in the classical model with universal 
scaling [2]. We briefly mention that Eq. (4) for the 
Wigner function has a broader validity than the

 

Schroedinger equation (2), because it can also describe a 
statistical mixture of states which cannot be represented 
by a wavefunction but rather by a density operator. 

Eqs.(2) and (3) are conveniently solved in the 
momentum representation. Assuming that ( )1, ,z zθΨ  is a

 

periodic function of θ , it can be written as a Fourier 
series of momentum eigenstates ine θ :  
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so inserting Eq. (7) into Eqs. (2) and (3), we obtain 
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where 
2

2n

n
E nδ

ρ
= + . Eqs. (8) and (9) are the discrete 

QFEL model. They are our working equations and their 
numerical analysis will be discussed in the following

 

section. Note that, from Eq. (7), it follows that 
2

nc  is 

the probability that an electron has momentum n kh . The 
RHS of Eq.(9) is the quantum expression for the bunching 
parameter, b, which requires a coherent superposition of

 

different momentum states.  
 

LINEAR ANALYSIS 
 
The stability analysis of Eqs. (8) and (9) has been carried

 

out in [12,13] in the steady state limit. We assume that the

 

system is in an equilibrium state with no field, 0A = , and 
all the electrons are in the state n , with 1nc =  and 

0mc =  for all m n≠  . Looking for solutions of the

 

linearized equations of the form i ze λ , one obtains the 
quantum dispersion relation  
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 Figure 1:  Imaginary part of the unstable root of the cubic 
equation (13) vs nΔ  , for  1/ 2ρ = 0.(a), 0.5, (b), 3, (c), 5, 

(d), 7, (e) and 10, (f). 
 
 
where /n nδ ρΔ = + . The system is unstable when the 

dispersion relation (10) has complex roots. Notice that 
this dispersion relation coincides with that of a classical 
FEL with an initial energy spread with a square 
distribution and width 1/ ρ  [6], which, in dimensional 

units, becomes kh . In Fig.1 we plot the imaginary part 
of λ  as a function of nΔ  for different values of ρ . The 

classical limit is obtained for 1ρ >>   (see Fig.1a).  

     When 1ρ ≤   (Fig.1b-f), the resonance moves from 

0nΔ =  to 1/ 2n ρΔ =  (in dimensional units ( )0 rmc γ γ− =  

/ 2kh  [14]), with peak value Im λ ρ=   and full width 

on δ  equal to 4 ρ (in dimensional units 3 / 24 k ρh ). 

However, one can also plot the solution of Eq.(10), for 
fixed ρ , as a function of the real detuning δ (see Fig.2). 

One obtains discrete lines (as in a cavity) centered on 

( )1 2 / 2nδ ρ= −  equally spaced by 1/ ρ , whose width is 

4 ρ . Eventually, the classical limit with a broad, 

continuous gain spectrum occurs when the frequency 

separation, 1/ ρ , becomes smaller than the width 4 ρ  

of each gain region i.e. 1/ 4ρ ρ<  or  0.4ρ >  (see Fig 

2(c)). The physical reason for these discrete frequencies is 
that in the quantum regime the electron recoils by kh , so 
that electrons undergo a transition from an energy 

2 2
nE p n∝ ∝ , to the state with energy ( )2

1 1nE n− ∝ − . 

Hence, the transition frequency varies as 

( )2 21 1 2n n n− − = − , as above. 

    As discussed in [12] for 1ρ >>  the electrons have 

almost the same probability of transition from the 

momentum state 1n n→ ±  (i.e. 
2 2

1 1n nc c+ −≈ ), 

absorbing or emitting a photon. On the contrary, in the 

case 1ρ ≤  , 
2 2

1 1n nc c+ −<<  , i.e. the particles can only 

emit a photon with transition 1n n→ − , behaving 

approximately as a two level system [8] described by the 
so-called Maxwell-Bloch equations [15].  

 

 Figure 2:  Imaginary part of the unstable root of the cubic 
equation (13) vs. δ  for  (a) 0.1ρ =  , (b)  0.2ρ = , and 

(c) 0.4ρ = . The total width of each line is 4 ρ and the 

line separation is 1/ ρ  centered on  ( )1 2 / 2nδ ρ= − . 

Continuous limit when 4 1/ρ ρ= , ( )0.4ρ =  

 

     One can show [8] that, in the quantum limit 1ρ < , one 

has a quantum gain length, ' /(4 ) g wL λ πρ ρ= , and a 

quantum cooperation length, ' /(4 ) c rL λ πρ ρ= , larger 

by a factor 1/ ρ  than the classical one [1]. This can be 

easily seen by defining a universal quantum scaling as 
follows: In Eq.(8) and (9) perform the transformation 

z zρ→ , 1 1z zρ→ , A Aρ→ , /n nE E ρ→ . The 

transformed equation will not contain the coefficient ρ  

in the RHS of Eq.(8), so that the solution will be 

independent of ρ . In particular, 
2

Aρ  (i.e., the photon 

number per particle) will be invariant and of the order of 
unity (see Fig.3). 
        
 

NUMERICAL RESULTS 
 
We now show that the discrete gain spectrum of the 

quantum regime shown in Fig.2, can give rise  to 
“quantum purification” of the SASE spectrum. Fig. 3 
shows a numerical simulation of the QFEL model Eq.(8) 
and (9).  

The simulation assumes all electrons are initially in 
the momentum state n=0. The initial conditions for all the 
simulations are therefore ( ) 0,1 =zzA , ( )1 1 , 0c z z− = =  

( )1

0
i zb e φ  and, ( ) 2

010 1, bzzc −=  where 01.00 =b  and 
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Figure 3:  Numerical solutions of Eq. (8) and (9), for 
0δ = , in the classical ( 5ρ = ) (a, c) and quantum 

regimes 0.1ρ =  (b, d) for 100z = : Graphs (a) and (b) 

show the scaled intensity and Graphs (c) and (d) show the 
corresponding scaled power spectra. The dotted line in (a) 
and (b) mark the front edge of the electron pulse 1 30.z =  

The frequency shift in (d) is in agreement with that 
predicted from Fig. 2(a).  

 
( )1zφ  is a randomly fluctuating phase with values in the 

range (0,2 )π . Fig. 3(a) and (b) show the field intensity as 

a function of 1z  at 100=z  for the classical and quantum 

regimes respectively. Fig 3(c) and (d) show the 
corresponding classical and quantum power spectra of the 
radiated field versus ( ' ) /(2 )ω ω ω ρω= − , where ω is the 

resonance (spontaneous emission) frequency. It can be 
seen that there is a dramatic difference between the 
classical evolution (Figs 3(a,c)) and the quantum 
evolution (Figs 3(b,d)). The temporal structure in the 
classical limit (Fig. 3(a)) is almost chaotic, with a broad 
spectrum. In contrast, the temporal behaviour in the 
quantum limit (Fig. 3(b)) shows a purification of the 
initially noisy evolution, and the corresponding spectrum 
is composed by narrow lines, in agreement with the linear 
analysis reported in Fig.2(a).  

    The frequency position seen in Fig. 3(d) is in 
agreement with that predicted by linear theory (see 
Fig.2(a)). Note that the line separation 1/ ρ  corresponds 

in real units to the relativistic recoil frequency 
2(2 ) /( )k mγh . The LHS of Fig.3(b) is the unresolved beat 

between the two frequencies of Fig.3(d). For small values 
of z only the frequency with smaller ω  appears. 
Increasing z  other lines at distance 1/ ρ  will appear.  

  The reason for quantum purification of the SASE 
spectrum is as follows : As remarked earlier, in Fig. 1 and 

2, the gain bandwidth decreases as ρ   and the 

cooperation length is longer by a factor ρ . Hence, one 

can understand that in quantum SASE, 1ρ << , the 

system radiates coherently as if the startup of the FEL 
interaction is initiated by a coherent bunching or a 
coherent seed.  

CONCLUSIONS 
 
In conclusion, in this paper we have given a proof of 

principle of the novel regime of Quantum SASE, with 
dynamical properties very different from “normal” 
classical SASE. In particular, quantum SASE predicts 
quantum purification of the temporal structure and 
spectrum, which becomes a series of discrete narrow 
lines. We demonstrate that the classical continuous and 
broad spectrum is obtained when ρ  is increased so that 

the distance between the lines, 1/ ρ , decreases and their 

width, 4 ρ , increases until they overlap for 0.4ρ ≥ . 

The possibility of experimental observation of this 
quantum regime with a laser wiggler has been presented 
in [16] and is under further investigation, details of which 
will be discussed elsewhere [17]. 
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