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Abstract 
The effect of dissipative losses in the grating surface of a 

Smith-Purcell free-electron laser is examined analytically.  
It is shown that losses have a significant impact on the gain 
of amplifiers (which operate on a convective instability) 
and on the growth rate of oscillators (which operate on an 
absolute instability), but it is not absolutely necessary for 
the ideal gain (without losses) to exceed the ideal 
attenuation (without gain) to have positive net gain or 
growth rate.   

INTRODUCTION 
Smith-Purcell free-electron lasers (SP-FELs) operate on 

an evanescent wave of the grating over which the electrons 
are passing [1].  Depending on the phase velocity of the 
evanescent wave, which is synchronous with the electron 
velocity, the group velocity may be positive or negative.  If 
the group velocity is positive, the device operates on a 
convective instability as an amplifier; if the group velocity 
is negative, the device operates on an absolute instability 
and oscillates spontaneously, without external feedback, 
above the so-called start current [2].   

As SP-FELs are designed to operate at higher 
frequencies, dissipative losses in the grating surface 
become more important.  To describe the effect of these 
losses, we develop a dispersion relation for the evanescent 
wave that includes the losses, and we examine the solutions 
for both amplifiers and oscillators. 

DISPERSION RELATION 
We consider a metallic grating having a period L  and 

wave number 2 /K Lπ= .  Such a grating supports an 
evanescent wave of frequency ω  and wave number k  that 
travels along the surface of the grating in the direction 
perpendicular to the grooves.  The phase velocity is 

/v c kφ φβ ω= = , where c  is the speed of light.  The 

dispersion relation ( )kω  for a typical grating is shown in 
Figure 1.  Within each Brillouin zone the curve is 
symmetric about the point / 1/ 2k K = , where the group 
velocity /g gv c d dkβ ω= =  vanishes.  To the left of this 
point, called the Bragg point, the group velocity is positive, 
and to the right it is negative.  To represent the effect of an 
electron beam, the region above the grating is filled with a 
uniform plasma moving to the right at the velocity v cβ= , 

parallel to the top of the grating in a direction 
perpendicular to the grooves.  The synchronous point 
( )0 0,kω  is the point where the beam line of the plasma, 

ckω β= , intersects the dispersion curve as shown in 
Figure 1.   
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Figure 1: Dispersion relation and beam line for a typical 
grating. 

In the neighborhood of the synchronous point ( )0 0,kω  
the dispersion relation for the evanescent wave traveling 
along a perfect grating (no losses) in the presence of the 
electron beam is 

( )
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R c kω

ω
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γ δω β δ
− =

−
  (1) 

where δω  is the complex frequency shift, kδ  the 

complex wave number shift, 21/ 1γ β= −  the Lorentz 
factor, and pω  the plasma frequency in the laboratory 
frame.  The factors S  and Rω  depend on the details of 
the grating profile [2].  To account for the effect of losses, 
we argue as follows.  If we place perfect reflectors at the 
ends of a short section of the grating, it becomes a 
resonant cavity.  Ignoring the effect of the beam for the 
moment, we can take ( )0 0,kω  as the operating point of 
the resonator.  If we now introduce small resistive losses 
in the surface of the grating, the frequency shift of the 
resonant cavity is [3] 

( )0 1
2 c

i
Q

ωδω = − +    (2) 
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The Q of the cavity is 

0c

U
Q

Q
ω=     (3) 

where U  is the stored energy per unit length and Q  the 
power loss per unit length.  By adding this term to the left-
hand side of (1) we get the complete dispersion relation, 
including losses 

( ) ( )2 0 1
2g

c

c k c k i
Q

ωδω β δ δω β δ⎡ ⎤− − + + = Δ
⎢ ⎥
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where 
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Calculations show that Δ  is positive.  A similar equation is 
obtained for gyrotrons [4]. 

AMPLIFIERS 
When the group velocity is positive, the device operates 

on a convective instability [5].  A wave incident from the 
upstream end of the grating travels along with the electron 
beam.  If the wave is synchronous with the electron beam, 
the wave is amplified.  For a steady incident wave we may 
take 0δω =  and the dispersion relation (4) simplifies to 
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  (6) 

In the absence of losses ( cQ → ∞ ) we are left with 

3
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This admits three roots, and the ideal gain (the gain in the 
absence of losses) on the fastest-growing wave is 

( )
1/ 3

2 3

3Im
2 g

k
c

μ δ
β β∞

Δ= − =   (8) 

as found previously [2].  Since Δ  is a slowly varying 
function of the wave number, we see that near the Bragg 
point ( 0gβ = ) the gain has the behavior ( )1/ 3

gOμ β −
∞ ∝ , 

so the gain is largest when the group velocity is small.  In 
the absence of the electron beam ( 0Δ = ), the dispersion 
relation (6) reduces to  

( )0 1
2 g c

k i
cQ

ωδ
β

= +    (9) 

The attenuation coefficient in an empty grating is 
therefore 

( ) 0Im
2 2g c g

Q
k

cQ c U
ων δ

β β∞ = = =  (10) 

as found previously [2].  However, while the imaginary 
part of (9) gives the attenuation, the real part introduces a 
phase shift that is not accounted for in previous work.  
Since Q  and U  are slowly varying functions of the 

wave number, we see that ( )1
gOν β −

∞ ∝  near the Bragg 
point, so the attenuation is largest when the group velocity 
is small.  In fact, we see that  

( )2 / 3

0/
ggO βν μ β

−

∞ ∞ →∝ ⎯⎯⎯→∞   (11) 

so the attenuation in an empty grating always exceeds the 
ideal gain near the Bragg point. 

When gain and attenuation are both present, it is 
convenient to write the dispersion relation in the 
dimensionless form 

( )2 31 0k k i JΔ Δ − + + =⎡ ⎤⎣ ⎦    (12) 

where  
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The dispersion relation (12) admits three roots.  When 
the electron density vanishes, one root corresponds to the 
structure wave (the wave that propagates along the grating 
in the absence of an electron beam) and it decays with 

( )Im 1kΔ = .  The other two waves are the fast and slow 

space-charge waves, for which ( )Im 0kΔ =  when the 
electron density vanishes.  As the electron density 
increases, the slow space-charge wave becomes the 
growing wave and the fast space-charge wave becomes a 
slowly decaying wave.  The structure wave becomes the 
strongly decaying wave.  For any 0J >  the slow space-
charge wave is always growing.   
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OSCILLATORS 
When the synchronous point lies to the right of the Bragg 

point on the dispersion curve, the group velocity is negative 
and the device operates on an absolute instability [2,5].  
The evanescent wave traveling backward bunches the 
plasma near the upstream end of the grating, and as the 
bunched beam travels toward the downstream end of the 
grating it excites the evanescent wave.  Thus, the instability 
is self-excited and external feedback is not necessary.  
Above the start current, the device oscillates spontaneously.  
In an oscillator, both the frequency shift and the wave 
number shift are nonvanishing, so it is convenient to 
rewrite (4) in the dimensionless form 

( )2 1 0δ δ κ− + =     (15) 

where the signs have been chosen for the case 0gβ < , and  
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in which the subscript 1...3j =  is used to identify each of 
the three roots.  As discussed previously [2], the boundary 
conditions are that there is no wave incident from the 
downstream end of the grating, and the electron beam 
enters the region above the grating undisturbed.  These are 
summarized by the equation 
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where the parameter 

 
1/ 3

2 3

2
3g

Z Z
c

ξ μ
β β ∞

Δ= =   

(19) 

is proportional to the ideal gain and the grating length.  The 
numerical solutions are the same as those obtained with 
losses neglected [6].  Some results are shown in Figure 2.   
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Figure 2: Dimensionless growth rate ( )Im κ  as a 
function of the dimensionless gain ξ . 

In terms of the ideal gain μ∞ and empty-grating 
attenuation ν ∞ , we see from (17) that the growth rate 
of the oscillation is  

( ) ( ) 32Im Im
23

g

g

cββ μ νδω κ
β β μ

∞ ∞

∞

⎡ ⎤
= −⎢ ⎥− ⎢ ⎥⎣ ⎦

 (20) 

As a test of these predictions, we can compare our
 results  to the simulations reported recently by Don-
ohue and Gardelle [7].  As shown in Figure 3, the
agreement is remarkably good.   
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Figure 3: Computed growth rate(curve)compared with 

the simulations of Donohue and Gardelle (squares)[7]. 

For the mode to grow with time, it is necessary that

 

( )Im 0δω > , so the start current, above which 
oscillations grow, corresponds to the condition 
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1/ 3

2
0

2

3
Im

2 2cg Q
ω νβκ

μβ
∞

∞

> =
Δ

  (21) 

In the simulations of Donohue and Gardelle, losses
are absent, so the start condition is ( )Im 0κ > .  From 
Figure 2 we see that this corresponds to 0 1.973ξ ξ> ≈ .
In the simulations this occurs at a current of 8.5 A,
just off the left edge of Figure 3, and below this
current the oscillations vanish.   
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Figure 4: Predicted start current in the SP-FEL experiments 
at Dartmouth [8] including losses (solid curve) and 
ignoring losses (dotted curve). 

The only available experimental data are from the 
experiments at Dartmouth [8,9].  In these experiments 
losses were significant but not large.  The predicted start 
current with and without losses is shown in Figure 4.  At 40 
kV, the difference is about 25 percent.  In those 
experiments, the start current at 40 kV was observed to be 
on the order of 1 mA, in reasonable agreement with the 
predictions.  Losses are expected to become more 
important at higher frequencies. 

CONCLUSIONS 
From the above analysis we see that dissipative losses in 

the grating of a SP-FEL have an impact on the gain and 
growth rate.  In an amplifier, there is always one wave (the 
slow space-charge wave) for which the net gain is positive, 
no matter how large the attenuation.  However, the impact 
of losses is more important in an oscillator.   
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