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Abstract

We numerically investigate the effect of a delayed con-
trol method on the stabilization of the dynamics of the Elet-
tra storage-ring free-electron laser in Trieste (Italy). Simu-
lations give evidence of a significant reduction of the typi-
cal large oscillations of the laser intensity. Results are com-
pared with numerical data obtained with a derivative feed-
back. The possibility of an experimental implementation
of the proposed method is also discussed.

INTRODUCTION

Since its discovery, lasers receive a great attention as
sources of coherent radiation. Nowadays, the possibility
to extend the spectral range of the laser emission towards
shorter wavelengths opens new scenarios for research and
applications. In this aspect, free-electron lasers (FELs)
play a crucial role for their complete tunability in the range
between the far infrared to the soft x-rays region [1]. FEL
systems, which exploit the radiation emitted by relativistic
electrons when passing in a periodic magnetic field gen-
erated by an undulator, may rely on single-pass or oscil-
lator configurations [1]. In the first case, the light am-
plification is obtained during one single pass of the elec-
tron beam through the undulator structure. In the second
case, the light emitted by the electron beam is stored in
an optical cavity and the laser effect is reached by means
of successive light-electron interactions. Among oscilla-
tors, storage-ring free-electron lasers (SRFELs) present the
most intricate dynamics: the electron beam is not renewed
(as in the case of linac-based oscillators) and keeps track of
previous interactions.

In this paper we focus on the dynamics of the SRFEL
which is currently operational at Elettra [2]. The necessity
of disposing of a laser cavity with good reflecting mirrors
imposes a lower limit to the possible emission wavelength;
up to now laser emission has been demonstrated down to
175 nm [3], which is the shortest wavelength ever reached
using an oscillator FEL.

Presently, an important limitation to the use of such a
system for scientific applications is the rather poor quality
of the laser temporal stability. The laser intensity of a SR-
FEL is characterized by a sequence of micropulses having
a duration of the order of ten picoseconds and separated by

intervals of about one microsecond. This feature is asso-
ciated to the impulsive character of the laser medium (i.e.
the electron bunch). Moreover, the evolution of the enve-
lope of such a micropulses on a millisecond temporal scale
is strongly related to the temporal overlapping between the
photons in the laser cavity and the electron beam circulat-
ing into the ring at each pass thorough the interaction re-
gion [4, 5]. More precisely, the envelope attaines a “cw”
regime for a perfect electron-photon tuning. Similarly to
the case of a synchronously pumped mode locked system
[6], the laser-electron detuning is at the origin of instabili-
ties which may manifest in periodic/a-periodic oscillations
[7] or even induce a chaotic behaviour [8]. The Elettra SR-
FEL shows a very high sensitivity to different kind of in-
stabilities which may perturb the electron-beam (and, thus,
the laser) dynamics [9]. As a result, the “cw” behavior is
generally not observed even when the system is close to
the perfect tuning condition. In this paper, we illustrate a
possible approach for the stabilization of the laser envelop
based on a delay feedback method [10, 11].

The paper is organized as follows. We first introduce the
model employed for simulating the longitudinal FEL dy-
namics. Then, we present numerical results obtained when
including the delay control feedback into the model. Fi-
nally, results are compared with those obtained making use
of a derivative filter, a feedback system successfully imple-
mented on the Elettra [12] and Super-ACO [13] SRFELs.

THE MODEL

The longitudinal dynamics of the SRFEL is studied by
considering the coupled evolution of the laser intensity and
of the electron bunch. It is modeled by means of an iterative
map [5]. The evolution of the laser-intensity profile, I(τ),
at the jth passage is modeled by the following recursive
equation:

Ij(τ) = R2Ij−1(τ − ε)(1 + gj−1(τ)) + is(τ) (1)

where τ is the temporal position with respect to the cen-
troid of the electron bunch, R is the cavity mirror reflectiv-
ity and is stands for the spontaneous emission of the op-
tical klystron; The parameter ε accounts for the detuning
between the period of photons in the optical cavity and the
revolution time of the electron bunch. The gain g j(τ) is
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given by

gj(τ) = g0
σ0

σj
exp(−

σ2
j − σ2

0

2σ2
0

) exp(− τ2

2σt,j
). (2)

In Eq. (2) g0 and σ0 account, respectively, for the initial
peak gain and energy spread; σj and σt,j � α

Ωσj
1, where

α is the momentum compaction and Ω the synchrotron fre-
quency, are, respectively the energy spread and the bunch
length of the j th interaction. The evolution of thr former is
given by

σ2
j+1 = σ2

j +
2ΔT

τs
(γIn + σ2

0 − σ2
j ) (3)

where γ = σ2
e − σ2

0 is the difference between the equilib-
rium value σe, and the initial value of the energy spread.
Ij =

∫ +∞
−∞ Ij(τ) is the normalized laser intensity, ΔT ac-

counts for the revolution period of electrons in the ring and
τs is the synchrotron damping time. For a more exhaustive
description of the model we refer to Ref. [12].

NUMERICAL RESULTS

It has been shown that the SRFEL operating at Elettra
is subjected to external perturbation with strong frequency
component at 50 Hz [12, 14]. This external noise, together
with the residual detuning, is at the origin of the instabil-
ity of the system and of the large oscillations of the laser
intensity [12].

The control method we are presenting is based on a
feedback delayed signal [10]. Such a method consists
in applying to the system a signal F (t) proportional to
A · (I(t)− I(t− Td)) where the loop gain A and the delay
time Td are the parameters to be set to control and stabilize
the laser evolution. The signal F (t) is used to change the
detuning according to ε = ε + F (t). This signal is used in
Eq. (1) by considering that t = j ·Δt.

Detuned SRFEL

We first investigate the laser dynamics in presence of a
detuning ε of 0.15 fs, without additional external pertur-
bations. In these conditions the laser shows large periodic
oscillations (Fig. 1), whose frequency, for the case of the
Elettra SRFEL, is about 250 Hz.

If the gain A of the control signal is strong enough
(A ≥ 0.5 · 10−6) and the delay time is close to the oscil-
lation period (∼ 4 ms) it is possible to stabilize the sys-
tem on its unstable fixed point characterized by I � 1
and a normalized standard deviation of the laser signal
sd =

√
<I2>−<I>2

<I> close to zero. However, as shown in
Fig. 2, the stabilization is effective only in a quite small
range of the delay Td. Outside such an interval oscillations
are still present and no stabilization is obtained.

Using a delay time significantly different from the period
of the “natural” oscillations affects the frequency and the

1Neglecting the effect of micro-wave instabilities.
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Figure 1: Simulation of the SRFEL dynamics with
Eqs (1,2,3), the used parameter values are: τs = 86 ms,
σ0 = 1.12 · 10−3, σe

σ0
= 1.3, α = 1.6 · 10−3, Ω = 16 kHz,

g0 = 0.145, is = 4.3 · 10−7, ΔT = 216 ns, R = 0.96.
a) Temporal evolution of the laser intensity in presence of
a detuning ε = 0.15 fs. The laser shows large oscilla-
tions with a characteristic period of about 4 ms. b) At-
tractor of the SRFEL dynamics reconstructed by means of
embedding technique[15] with and embedding delay time
τemb = 345 μs. c) Power spectrum of the laser signal.
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Figure 2: Maxima of the laser signal as a function of the
delay time Td and for A = 0.5 · 10−6 showing the small
range suitable for stabilization.

amplitude of the oscillations. This fact is evident looking
at Fig. 3 where a time Td shorter than the period of the
system has been used. Similar results are obtained for Td

larger than the period.
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Figure 3: Evidence of the change in the frequency and am-
plitude of the laser oscillations when the control loop is
activated (at t = 0.43 s) with a delay time far from the
“natural” oscillation period. Here Td = 3.49 ms.

The high precision required by the method is a prob-
lem when envisaging its experimental implementation. In
fact, the system generally shows oscillations with many fre-
quency components and this makes impossible to define a
suitable delay time.
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However, following the idea of the adaptive control of
chaos [16], it has been recently shown that for the stabi-
lization of an unstable fixed point a better method consists
in the use of a control loop relying on two incommensu-
rable delay times [11];

F (t) = A1 · (I(t)− I(t−Td1))+A2 · (I(t)− I(t−Td2)).
(4)

We investigate the effect of such a control on the detuned
SRFEL. Here we present results for the case of A1 = A2 =
0.5 · 10−6. As shown in Fig. 4, the new control term leads
to a significant improvement of the feedback robustness.
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Figure 4: Normalized standard deviation of the laser inten-
sity I of the SRFEL controlled by the signal provided by
Eq.(4) where A1 = A2 = 0.5 · 10−6 and Td1, Td2 lie in the
interval 3.5− 4.75 ms.

Indeed, stabilization (corresponding to zero standard de-
viation) is achieved in a quite extended region around the
diagonal (Td1 = Td2).

This result is important when, due to an external noise
perturbing the electron-beam dynamics, the laser shows a
chaotic or multifrequency regime. In fact, in this case the
system is not characterized by an exact periodicity and, as
already stressed, the stabilization can not be achieved using
a single delay time.

Detuned SRFEL in presence of an external noise

We now investigate the case of a detuned SRFEL in pres-
ence of an additional external signal at 50Hz perturbing
the evolution of the optical gain (see Eq.(5)). This situation
is close to the one currently observed when operating the
Elettra SRFEL [12]. As shown in Ref. [12], the model pre-
viously described is able to reproduce quite accurately such
an experimental condition when the detuning ε is modified
as follows

ε = ε0 + δε · sin(2πνt). (5)

In the previous equation ε0, the “unperturbed” detuning,
has been set to 0.05 fs, the perturbation amplitude δε to
0.18 fs and the perturbation frequency ν to 50 Hz.

In this configuration the system shows a chaotic dynam-
ics characterized by a broad spectrum around 250 Hz (see
Fig. 5). As expected, simulations carried out using a single
delay Td show that the feedback can reduce the amplitude
of the oscillations (see Fig. 6), but is not able to stabilize
the system on the fixed point.
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Figure 5: Temporal evolution of the laser signal I in pres-
ence of a slight “unperturbed” detuning and with an added
external perturbation at 50 Hz. b) Reconstructed attractor.
c)Spectrum.

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7
0

1

2

3

time (s)

la
se

r (
a.

u.
)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

laser (a.u.)

la
se

r (
a.

u.
)

0 200 400 600
10

−5

10
0

frequency (Hz)

sp
ec

tru
m

(a) 

(b) (c) 

Figure 6: a) Temporal evolution of the laser signal I in
presence of a slight “unperturbed” detuning and with an
added external perturbation at 50 Hz. Stabilization at-
tempted using a single delay time Td = 4.38 ms and with
A = 0.5 · 10−6. b) Reconstructed attractor of the system
with and without the control signal (blue and red respec-
tively). c) Spectrum of the laser intensity of the SRFEL
with the controlling signal.

The effect of the control feedback is evident from
Fig.6(b) where the attractor of the uncontrolled system is
reported together with that of the controlled one. The effect
of the control feedback can be also estimated by measuring
the standard deviation of the signal I with (sd = 0.76) and
without (sd = 1.89) the control.

The use of a control loop with two different delay times
leads to a noticeable improvement. The normalized stan-
dard deviation is indeed reduced from sd = 1.89 to sd =
0.28.

The effect is also visible from a comparison between the
attractors of the uncontrolled and of the controlled system
reported in Fig.7(b). Results are similar when using de-
lay times and coupling strength slightly different from the
values used in the presented cases.

COMPARISON WITH THE DERIVATIVE
FILTER METHOD

We can now compare the results of the proposed method
with those obtained with a derivative feedback, a control

Proceedings of the 27th International Free Electron Laser Conference

21-26 August 2005, Stanford, California, USA 457 JACoW / eConf C0508213



0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

1

2

3

time (s)

la
se

r (
a.

u.
)

0 2 4 6 8 10
0

2

4

6

8

10

laser (a.u.)

la
se

r (
a.

u.
)

0 200 400 600
10

−5

10
0

frequency (Hz)

sp
ec

tru
m

(a) 

(b) (c) 

Figure 7: a) Temporal evolution of the laser signal I in
presence of a slight detuning and with an added external
perturbation at 50 Hz. The system is also driven by a con-
trol signal (Eq.4) with two different delay times Td1 and
Td2 equal to 4.36 ms and 3.11 ms and with A1 = A2 =
1.95 · 10−6. b) reconstructed attractors of the controlled
system (blue) and of the system without control (red). c)
Spectrum of the controlled SRFEL

method that has been already implemented at Elettra [12]
that uses as a control signal the derivative of the laser in-
tensity provided by

Fj+1 = β · (Ij − Ij−1). (6)

In Fig. 8 the results of the two control methods applied
on the SRFEL in the same conditions are compared be-
tween them. Fig 8(a) shows the best results for the deriva-
tive feedback (β = 0.03) applied on the SRFEL with the
same values of ε0 and δε used for implementing Eq.5, while
Fig. 8(b) shows the temporal evolution of the laser intensity
when controlled by the two-delay method.
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Figure 8: Temporal evolution of the laser signal I in pres-
ence of a slight detuning (ε0 = 0.05 fs) and with an added
external perturbation at 50 Hz (δε = 0.18 fs). a) The sys-
tem is stabilized by a control signal with two different delay
times Td1 and Td2 equal to 4.36 ms and 3.11 ms and with
A1 = A2 = 1.95 · 10−6 (see Eq. (4)). b) The system is sta-
bilized by a control signal provided by a derivative control
loop [12] with (β = 0.03) (see Eq. (6)).

In the studied conditions, characterized by a small detun-
ing and a large noise modulation, the delay method is more
effective with respect to the derivative one that presents
larger residual oscillations characterized by sd = 0.55.

It is important to note that the derivative control method
can be considered as a limit case of the delay control

method when Td approaches ΔT . In the case of peri-
odic oscillations, but not in the case of multi-periodicity or
chaotic behavior, also the use of a delay time Td = T +ΔT
(where T is the period of oscillations) corresponds to the
derivative case.

CONCLUSIONS

We presented a numerical study for the stabilization of
the temporal dynamics of a SRFEL. Simulation have been
performed considering the longitudinal dynamics for the
Elettra SRFEL where both the detuning and external resid-
ual noise signal are present. The dynamics of the system is
characterized by oscillations with a broad spectrum around
at 250 Hz. We showed that a control loop using a single
delay is able to reduce these oscillations. The reduction of
the oscillation is more evident when using a control feed-
back with two delay times. Although the method is not able
to stabilize the “cw” regime, we consider that the strong
reduction of oscillations of the system is an important im-
provement of the performance of the Elettra SRFEL and
that the method should be implemented experimentally. We
also plane to consider the possibility of a feedback control
signal using more than two delay times.
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