
THEORY OF COHERENT RADIATION FROM A GRATING-WAVEGUIDE 
FREE-ELECTRON LASER 

Yuan-Yao Lin and Yen-Chieh Huang 
Institute of Photonics Technologies, National Tsinghua University, Hsinchu 30043, Taiwan

Abstract 
A grating-waveguide free electron laser can function as 

a mirrorless distributed-feedback oscillator near the Bragg 
resonance, as well as a backward-wave oscillator and 
forward wave amplifier at the other portions of the 
dispersion curve. Low oscillation threshold and single 
longitudinal mode are expected from this type of 
relativistic distributed-feedback oscillator.  

INTRODUCTION 
Since Urata et al. [1] observed superradiant Smith-

Purcell emission by using a 30-40 keV electron beam 
from a scanning electron microscope, there has been a 
wide interest in investigating high-gain THz Smith-
Purcell radiators pumped by keV electron beams. A 
Smith-Purcell radiator produces transversely asymmetric 
spontaneous radiation due to the arrangement of a single 
grating on one side of the electron beam. This asymmetric 
output could limit the usefulness of such a device in the 
THz regime where diffraction of waves is severe. This 
problem is partially solved by the so-called planar orotron 
[2] in which a planar metallic plate is installed above a 
grating to form a wave-guiding structure. Killoran et al. 
[3] further developed a dual-grating resonator in which an 
electron beam propagates closer to one of two parallel 
gratings. The grating closer to the electron beam is used 
for generating Smith-Purcell radiation and the other is 
used for reflecting radiation of certain angles back to the 
driving electron beam.  

We describe in this paper a grating-waveguide free-
electron laser (FEL) with two planar gratings arranged in 
parallel to an axial electron beam. This arrangement is 
similar to a millimetre-wave backward wave oscillator 
(BWO) using a corrugated cylindrical waveguide. We 
propose in this paper that a grating-waveguide FEL 
operating at the Bragg resonance can be a low-threshold, 
mirrorless distributed-feedback (DFB) oscillator. In 
addition, this paper is to extend the BWO concept to a 
planar design suitable for generating THz radiations.  

MODE ANALYSIS  
To explain the superradiant Smith-Purcell emission 

observed by Urata et al., Andrews et al. [4] has modelled 
the problem as enhance harmonic radiation from electron 
bunching when a moving plasma dielectric interacts with 
a surface evanescent wave. In the following, we adopt the 
plasma-dielectric approach for calculating the eigenmode 
and small-signal gain of a grating-waveguide FEL. 

Figure 1 defines the coordinates and symbols in our 
calculation. In Fig. 1, two conducting gratings are 
arranged in parallel to each other with their grating 

vectors aligned in the z direction. The two gratings do not 
have any variation in the x direction and form a 
waveguide for waves propagating in the z direction. The 
grating has a period Λg, groove depth D, and groove 
width W.  

 
Figure 1: The structure of a grating-waveguide FEL. The 
variables Λg, D, W, and G are the grating period, groove 
depth, groove width, and grating gap, respectively. The 
electron beam propagates in z. The structure has no 
variation in x. 

We assume that a uniform electron beam propagates in 
the z direction and fills up the waveguide-gap region 
between 2/2/ GyG ≤≤− . With this arrangement, only 
the TM wave in the waveguide needs to be considered. 
By using Floquet’s theorem, the electric field intensity in 
the z direction Ez and the magnetic field intensity in the x 
direction Hx in the grating-gap region can be expanded as  
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where p is the index of the spatial harmonics, kz is the 
wave number in the z direction for p = 0, Kg = 2π/Λg is 
the grating wave number, ω is the radiation frequency, 
and the superscripts c and s denote the symmetric and 
anti-symmetric distribution of the field components in the 
waveguide gap, respectively. With ω′p being the plasma 
frequency in the electron rest frame, αp is given by [4] 
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From Ampere’s law, Eqs. (1, 2) are coupled through the 
expressions 
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where )'1(0 pχεε +=  is the permittivity of the plasma 
dielectric with the electric susceptibility  
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In Eq. (5), γ is the Lorentz factor, ωp is the plasma 
frequency in the laboratory frame, and β ≡ v/c with v and 
c being the electron speed and wave speed in vacuum, 
respectively. Because a uniform electron beam is strongly 
coupled to the symmetric Ez mode, we set 0=s

pE  in Eq. 
(1) and thus 0=c

pH  in Eq. (2) as a result of Eq. (4). 
In the groove region where 2/)2/( GyDG −≤≤+−  and 

Wz ≤≤0  the electric field Ez and the magnetic field Hx 
can be expressed as  
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where the tangential electrical field Ez vanishes at the 
metal surface )2/( DGy +−= , and )/)(/( zHjE xy ∂∂−= ωε  

vanishes at both z = 0 and z = W. Also, 
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with i = x,y,z must hold for the periodic boundary 
condition. From the wave equation, the coefficient nκ  

satisfies  
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By matching the boundary condition at 2/Gy ±= , one 
obtains 
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Eq. (9) is the dispersion relation and its solution )(kω  
gives the guiding modes of this structure. For a relativistic 
electron beam, p'χ  diverges only when p = 0 in Eq. (5). 
Using

00 '' χδχ pp =  in (10), one obtains  
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In the absence of the electron beam, Vnm is ineffective in 
Eq. (11). We use MATLAB scripts to calculate the 
dispersion or band diagram for the symmetric Ez modes 
in a cold structure and plot it in Fig. 2 with the normalized 
frequency ω  = ω/(cKg) in the vertical axis and the 
normalized propagation constant =zk  kz/Kg in the 
horizontal axis. In plotting Fig. 2, the following structure 
parameters are used for THz radiations, Λg = 50 μm, W = 
30 μm, D = 60 μm and G = 150 μm. Figure 2 clearly 
shows the distinct difference between a grating-
waveguide FEL and an evanescent-mode Smith-Purcell 
radiator, because the latter does not have high-order 
frequency bands and the slope at the band edge is 
nonzero. An electron beam line with a slope β can be 
drawn on the same plot to find the synchronous points 
between the wave and the electron. For example, a 30-50 
keV electron has a speed between 0.328c and 0.4122c. 
The beam line intercepts both the first and second band in 
the dispersion diagram. It is evident that the high-
frequency bands offer the opportunity of generating high-
frequency radiations. The condition =zk  0.5× m is 
known to be the Bragg condition of a grating along the 
grating-vector direction. As far as the first frequency band 
is concerned, the group velocity is positive or negative to 
the left or right of the Bragg line =zk  0.5, respectively. 
As analyzed by Swegle [5], such a negative-group-
velocity device can function as a backward-wave 
oscillator when the beam current is above a certain 
threshold value. At the frequency where =zk  0.5 × m 
with m an integer, the group velocity of the wave is zero, 
because the distributed feedbacks from the gratings build 
up standing waves in the grating waveguide. If a beam 
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line intercepts the band curves at =zk  0.5 × m, this 
grating-waveguide FEL behaves like an electron-driven, 
mirrorless DFB oscillator. The beam line in Fig. 2 has a 
beam energy of 31.36 keV, intercepting the Bragg 
resonance =zk  0.5 in the first band and a synchronous 
point in the second band. This grating-waveguide FEL 
thus can establish its oscillation at the Bragg resonance 

=zk  0.5 as long as the gain favours the DFB resonance.  

 
Figure 2: The band diagram of a grating waveguide with 
Λg = 50 μm, W = 30 μm, D = 60 μm and G = 150 μm. A 
31.36 keV beam line intercepts the first band at the Bragg 
resonance, resulting in a low-threshold DFB oscillator.  

GAIN CALCULATION 
To calculate the small signal gain at a beam-wave 

synchronous point, we again used the perturbation 
technique described by Andrews et al. [4] to obtain  
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where 0k  is the synchronous wave number,  00 ckβω = ,  
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The power gain gLe2  with g the gain coefficient and L the 
grating length can be calculated from the roots of Eq. (14), 
given by 
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The plasma frequency 2
pω  in the laboratory frame can be 

expressed as   
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where AI   is Alfvén current,  eI  is the electron beam 
current, xd  and 

yd  are the electron beam diameters in the 
x and y directions, respectively. With Eqs. (17, 18), the  
gain coefficient of a grating-waveguide FEL has cube-
root dependence on the electron current. Figure 3 shows 
the gain coefficient as a function of the electron beam 
energy for a beam current of 5 mA and beam diameters of 

xd = yd  = 150 μm. The continuous and dashed curves are 
plotted for synchronous points in the first and second 
bands of Fig. 2, respectively.  

 
Figure 3: Small-signal gain coefficient of the symmetric 
Ez mode versus electron-beam energy for the first and 
second radiation bands. The gain coefficient diverges at 
the Bragg resonances.  

In general the electron velocity is less than the velocity 
of light. For the first band, the gain coefficient diverges at 
the Bragg resonances zk  = 0.5 and 1, corresponding to 
electron synchronous energies of 31.36 keV and 2.95 keV 
and radiation wavelengths of 298 μm and 469 μm, 
respectively. For the second band, the resonance at zk  = 
0.5 can not be used for beam-wave synchronization due to 
an unreasonable beam-line slope of β >1 at the 
synchronous point. For the resonance point at zk  = 1 in 
the second band, the electron beam energy is 18.6 keV, 
corresponding to a radiation wavelength of 183 μm. 
Therefore, given an electron beam energy, it is possible to 
generate a shorter radiation wavelength by resonating the 
radiation wave at the Bragg resonance in a high-order 
frequency band. This is a unique property that can not be 
offered by an evanescent-mode Smith-Purcell radiator.  

A wave oscillator is characterized by a threshold gain at 
which the oscillator starts to oscillate. The above gain 
calculation is useful when one uses the grating-waveguide 
FEL as an amplifier. As mentioned previously, a grating 
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waveguide FEL can function as a BWO in the negative-
slope portion of the dispersion curve or a DFB oscillator 
near the Bragg resonance. Following Swegle’s analysis, 
Andrews et al. [6] has extended their model to calculate 
the starting current of a Smith-Purcell BWO.  The same 
approach can be used to derive the starting current of the 
grating-waveguide BWO in a straightforward manner. 
However, finding the threshold current of a DFB grating-
waveguide FEL is more complicated, although Miller et 
al. [7] has attempted it with limited success in comparing 
theory and experiment.  If the grating corrugation is small 
compared with the waveguide gap, one can in principle 
decompose the oscillating field into the sum of a forward 
and a backward components, given by 

])()()[( 0,0, zjkzjk
x

zzz ezSezRyHH += − , where )( yH  is the 
transverse mode profile in an unperturbed waveguide, 

)(zR  and )(zS  are slowly varying field envelopes of the 
forward and backward components, respectively, and kz,0 
satisfies the Bragg condition 

gz mKk =0,2 . The envelope 
fields satisfy the coupled-mode equations [8]  
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where  
0,zz kk −=δ   is the detuning of zk  from the Bragg 

resonance, G(R, I) is the forward gain function provided 
by the electron beam, and κ is the coupling coefficient 
between the forward and backward field components. The 
threshold current Ith and resonant zk  can be solved from 
the boundary condition of a diverging output under a 
finite input field. A detailed calculation will be presented 
in our subsequent publications.  

DISCUSSION AND CONCLUSION 
The grating waveguide is a slow-wave structure similar 

to a corrugated cylindrical waveguide used for a 
millimetre-wave BWO. Therefore a grating-waveguide 
FEL can function as a BWO when operating at the 
negative-slope portion of the dispersion curve. The main 
emphasis of this paper is to recognize the potential of 
using a grating-wave FEL as a low-threshold DFB 
oscillator at the Bragg resonance. The dispersion relation 
for a grating-waveguide FEL described by Eq. (9) can be 
reduced to that for an evanescent-mode Smith-Purcell 
radiator by letting the waveguide gap become a large 
number or αpG/2 >> 1. Although Andrews et al. [6] has 
noted that the gain of an evanescent-mode Smith-Purcell 
radiator diverges at the Bragg resonance, they claimed 
that the loss at the Bragg resonance always exceeds the 
gain. This claim was based on a model describing an 
electromagnetic energy propagating along a longitudinal 
direction of the device, which is not valid for a standing-
wave resonator in which electromagnetic energy flows in 
both longitudinal directions and appears to have no net 

group velocity in the resonator. Like a Fabry-Perot 
resonator, a DFB resonator is a standing-wave resonator 
and has been demonstrated in numerous applications. The 
Bragg resonance in an electron-pumped grating 
waveguide leading itself to a relativistic DFB laser was 
also not recognized by Schächter et al. [9], Kim et al. [10], 
Marshal et al. [2], and  Killoran et al. [3] either,  despite 
they all described electron radiations from variants of 
grating structures, including the Smith-Purcell radiator, 
the planar orotron, and the dual-grating resonator.  

Unlike a BWO, a DFB oscillator can achieve a low 
threshold from significant distributed feedbacks in a 
properly designed grating waveguide. Since a grating-
waveguide FEL operating at the Bragg resonance is 
virtually a DFB oscillator, the well known advantages 
associated with a DFB laser should hold true to a grating-
waveguide FEL. Apart from its monolithic structure and 
mirrorless oscillation, the single-longitudinal-mode output 
from a grating-waveguide FEL will benefit the 
applications requiring high spectral purity of radiations. 
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