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Abstract

In a recent paper [1] we have described a novel variational
formulation for the propagation and generation of radiation
in wave-guides The work underlines calculation of modal
amplitude evolution rather than the calculation of the modal
shapes, which is common in previous art. Modal amplitude
evolution is important in electron devices such as free elec-
tron lasers and gyrotrons. The present paper deals with a
variational derivation of a numerical scheme that can be
used to study the build up of radiation in free electron lasers
in the linear approximation.

INTRODUCTION

Interaction of radiation and plasma waves in many elec-
tron devices takes place inside an open or closed cylinder
(wave guide) of some arbitrary cross-section (see figure 1
for a schematic illustration).

A well-known example is the free-electron laser, in which
the electromagnetic field interacts with an electron beam in
the presence of an undulator, generating high power coher-
ent radiation. In order to achieve lasing, the radiation is
being excited inside a resonator, dictating boundary con-
ditions for both forward and backward waves (see figure
1). Solution of the electromagnetic radiation field inside

Figure 1: The FEL scheme

the resonator, requires simultaneous integration of the cou-
pled excitation equations of forward and backward waves
[10]. However, it becomes difficult to accommodate the dif-
ferent boundary conditions for both forward and backward
modes in the same numerical integration scheme. Although
the radiation power is built gradually in the direction of the
electron beam propagation, the natural boundary conditions
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for the backward waves are given at the end of the interac-
tion region. Thus it is desirable to develop a numerical
procedure that allows non-local boundary conditions.

We suggest employing variational methods for calculat-
ing the total electromagnetic field, including excitation of
forward and backward waves. Our developed variational
principle is based on a modal representation of the total
electromagnetic field in terms of the eigenmodes of the ge-
ometry in which the radiation is excited and formulation
of the electromagnetic field action in the space-frequency
domain.

Variational principles for electromagnetic field dynam-
ics, including their interaction with matter are abundant in
the literature [2]- [9]. Moreover, the behavior of the electro-
magnetic field inside a wave guide in terms of a variational
principle was studied in many texts [4]- [9], most of the
times in order to provide a basis for a numerical scheme.
These works are concerned mainly with the derivations of
eigenmodes for the case of non trivial geometries or an in-
homogeneous refraction index. In this work we are not
concerned with the modal form rather we assume that it is
known. Our main concern is the development of the modal
amplitude inside the wave guide due to its interaction with
propagating charge. Three different variational principle
describing the modal propagation inside a wave guide are
introduced.

The structure of this paper is as follows: first we discuss
the fundamentals of electromagnetic field presentation in
the frequency domain, followed by a short review of the
modal representation in a wave guide. Next the action is
represented in terms of the mode amplitude. Then we in-
troduce the quasi Hamiltonian which allows us to obtain a
variational principle which generate first order equations in
terms of the field amplitudes. Finally the introduction of
backward-forward waves puts the variational principle in a
particular simple form which concludes our report.

MODAL & SPECTRAL PRESENTATION
OF ELECTROMAGNETIC FIELDS

The electromagnetic field in the time domain is described
by the space-time electric E(r, t) and magnetic H(r, t) sig-
nal vectors. r stands for the (x, y, z) coordinates, where
(x, y) are the transverse coordinates and z is the axis of
propagation. The Fourier transform of the electric field is
defined by:

E(r, ω) =
∫ +∞

−∞
E(r, t)e+jωtdt (1)
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where ω is the angular frequency and j =
√−1. Similar

expression is defined for the Fourier transform H(r, ω) of
the magnetic field. Since the electromagnetic signal is real,
its Fourier transform satisfies E∗(r, ω) = E(r,−ω).

Fourier transformation of the electric field results in a
’phasor-like’ function Ẽ(r, ω) defined in the positive fre-
quency domain and related to the Fourier transform by:

Ẽ(r, ω) = 2E(r, ω)u(ω) ≡
{

2E(r, ω) ω > 0
0 ω < 0 (2)

In the following we present the formalism employed
throughout this paper for analyzing the excitation of electro-
magnetic fields by current sources distributed along a wave
guide [1, 10, 12, 13]. The approach taken here utilizes
representation of the total electromagnetic fields and their
sources in terms of vector functions, which are the eigen-
modes solutions of the medium, free of charge or current
sources. The ’phasor like’ quantities defined in (2) can be
expanded in terms of transverse eigenmodes of the medium
in which the field is excited and propagates. The perpendic-
ular component of the electric and magnetic fields are given
in any cross-section as a linear superposition of a complete
set of transverse eigenmodes:

Ẽ⊥(r, ω) =
∑

q

Vq(z, ω)Ẽq⊥(x, y)

H̃⊥(r, ω) =
∑

q

Iq(z, ω)H̃q⊥(x, y) (3)

The summations include propagating and cut-off TE and
TM modes, for which Vq(z, ω) and Iq(z, ω) are the scalar
amplitude of the electric and magnetic fields respectively
and Ẽq⊥(x, y) and H̃q⊥(x, y) are their respective profiles.

Expressions for the longitudinal component of the elec-
tric and magnetic fields are obtained after substituting the
modal representation (3) of the fields into Maxwell’s equa-
tions, where the Fourier transform of the current density J,
J̃(r, ω) is introduced:

Ẽz(r, ω) =
∑

q

Iq(z, ω)Ẽqz(x, y) +
1

jωε
J̃z(r, ω)

H̃z(r, ω) =
∑

q

Vq(z, ω)H̃qz(x, y) (4)

By imposing the appropriate boundary conditions, the
Maxwell vector equations are transformed into scalar dif-
ferential (’transmission line’) equations, which describe the
evolution of the equivalent electric and magnetic amplitudes
Vq(z, ω) and Iq(z, ω):

−dVq(z, ω)
dz

= −jkzqIq(z, ω) + vq(z, ω)

−dIq(z, ω)
dz

= −jkzqVq(z, ω) + iq(z, ω) (5)

where:

kzq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j
√

k2
⊥q − k2 = j|kzq| k < k⊥q

(cut-off modes)√
k2 − k2

⊥q = |kzq| k > k⊥q

(propagating modes)

(6)

is the axial wave number of mode q. For n electrons travel-
ling under the influence of the wiggler magnetic flux density
vector �B, vq and iq can be calculated for propagating modes
as [13]:

vq(z, ω) = − e

Nq

n∑
i=1

Ẽ(xi, yi)qze
+jωti(z)

iq(z, ω) = − e

Nq

n∑
i=1

�vi⊥
viz

· Ẽ(xi, yi)∗q⊥e+jωti(z) (7)

In which �ri, �vi are the six dimensional coordinate of each
electron in phase space. And

ti(z) = t0i +
∫ z

0

dz′

viz(z′)
(8)

The coordinates �ri, �vi can be obtained by solving Newton’s
equation with the Lorentz force:

d

dt
(γi�vi) = − e

m

[
�vi × �B

]
(9)

where γi = 1√
1−(�vi

c )2
. The normalization of the field am-

plitudes of each mode is made via each mode’s complex
Poynting vector power:

Nq =
∫ ∫

c.s.

[
Ẽq⊥(x, y) × H̃∗

q⊥(x, y)
]
· ẑdxdy (10)

and the mode impedance is given by:

Zq =

{ √
μ
ε

k
kzq

= ωμ
kzq

for TE modes√
μ
ε

kzq

k = kzq

ωε for TM modes
(11)

ε is the electric susceptibility and μ is the magnetic perme-
ability.

The transmission-line equations (5) can also be written
in the form:

V ′′
q (z, ω) + k2

zqVq(z, ω) = −v′
q(z, ω) − jkzqiq(z, ω)

I ′′
q (z, ω) + k2

zqIq(z, ω) = −jkzqvq(z, ω) − i′q(z, ω) (12)

where (′) denotes a derivative in respect to z. Notice that
only one of the equations in (12) needs to be solved, since
solving for Vq(z, ω) we obtain immediately the solution for
Iq(z, ω) through equation (5) .

THE ACTION IN A WAVE GUIDE

Following [1] the action of an electromagnetic field in a
wave guide is given by:

A =
T 2

π

∞∑
n=1

1
n

∑
q

N ∗
q,n

kzq,n

Lq,n
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Lq,n ≡
∫

Lq,ndz

Lq,n ≡ 1
2
k2

zq,n
|Vq,n|2 − 1

2
|∂zVq,n|2 − 1

2
ω2

n

c2k2
⊥q

|vq,n|2

− �(v∗
q,n∂zVq,n) − �(kzq,niq,nV ∗

q,n) (13)

All the quantities in the above expression are defined in the

previous section. The quantity
N∗

q,n

kzq,n
is real and so are the

Lagrangian Lq,n and the Lagrangian densityLq,n. Equating
the variational derivative of the Lagrangian Lq,n to zero will
result in the second order equations given by (12).

In terms of the amplitude V and its complex conjugate
V ∗, the Lagrangian density L can be written as1:

L =
1
2
{k2

zV V ∗ − ∂zV ∂zV
∗ − ω2

c2k2
⊥

vv∗ − ∂zV v∗

− ∂zV
∗v + jkziV

∗ − jk∗
z i∗V } (14)

SOME NUMERICAL ASPECTS

In order to understand the mathematical structure of equa-
tion (13) we shall write it in terms of real quantities. Rep-
resenting all the quantities appearing in L (equation (13))
in terms of their real and imaginary parts we arrive at the
result:

L ≡ 1
2
k2

z |V |2 − 1
2
|∂zV |2 − 1

2
ω2

c2k2
⊥

|v|2

− �(v∗∂zV ) − �(kziV
∗)

=
1
2
[k2

z(V 2
r + V 2

i ) − (∂zV
2
r + ∂zV

2
i )

− ω2

c2k2
⊥

(v2
r + v2

i ) − ∂zVrvr − ∂zVivi]

− 1
2

{
kz(iiVr − irVi) (propagating)
|kz|(irVr − iiVi) (cut-off)

(15)

Notice that the cut-off modes Lagrangian density decouples
into two separate Lagrangian densities:

L = Lr + Li

Lr =
1
2
[k2

zV 2
r − (∂zVr)2 − ω2

c2k2
⊥

v2
r

− ∂zVrvr − |kz|irVr]

Li =
1
2
[k2

zVri
2 − (∂zVi)2 − ω2

c2k2
⊥

v2
i

− ∂zVivi + |kz|iiVi] (16)

while the propagating modes Lagrangian density cannot de-
couple. Using any type of discritization the Lagrangian
density given in equation (15) will become a real bilinear
form. For cut-off modes the form of −L appears to be pos-
itive since k2

z = −|k2
z | according to equation (6) . Thus

the solution will correspond to the minimum of the bilinear
form which can be found by standard numerical techniques

1From now on we will suppress the indices q, n

such as the conjugate gradient method [15]. For propagat-
ing modes k2

z = |k2
z | the solution will correspond to a saddle

point of the linear form and can be found using techniques
such as the ones described in [16].

THE QUASI HAMILTONIAN

In certain cases it is desirable to obtain first order equa-
tions instead of the second order equation (12). In analytical
mechanics [14] their is a well known technique to reach this
goal using the Hamiltonian construction. Since L given in
equation (13) is not strictly speaking a Lagrangian (time
which appears in proper Lagrangians is replaced here by
the longitudinal coordinate z) we will denote the analogue
construction of the Hamiltonian a "quasi Hamiltonian". For
convenience we introduce the Lagrangian density L̄:

L̄ = −2L = ∂zV ∂zV
∗ − k2

zV V ∗ +
ω2

c2k2
⊥

vv∗

+ ∂zV v∗ + ∂zV
∗v − jkziV

∗ + jk∗
z i∗V (17)

in which we utilized equation (14). Next we define the quasi
canonical momentums of V ′ ≡ ∂zV :

Π ≡ ∂L̄
∂V ′ = V ′∗ + v∗ = −jk∗

zI∗ (18)

in which equation (5) is used. Notice that the quasi canon-
ical momentums are proportional to I∗. Having done this
we are in a position to define the quasi Hamiltonian density:

H ≡ V ′Π + V ′∗Π∗ − L̄
= |kz|2|I|2 + k2

z |V |2 − jkzIv∗ + jk∗
zI∗v

− k2
z

k2
⊥

|v|2 + jkziV
∗ − jk∗

z i∗V

= kz[kz(|V |2 ± |I|2) − jIv∗ ± jI∗v

− kz

k2
⊥

|v|2 + jiV ∗ ∓ ji∗V ] (19)

the upper sign should be attributed to propagating modes
while the lower signs should be attributed to decaying
modes. Thus L̄ can be written as:

L̄ = V ′Π + V ′∗Π∗ − H
= kz[∓jI∗V ′ + jIV ′∗ − kz(|V |2 ± |I|2) + jIv∗

∓ jI∗v − jiV ∗ ± ji∗V +
kz

k2
⊥

|v|2] (20)

Our next step will be to take the variational derivative with
respect to I and V and their complex conjugates of L̄ which
is defined as:

L̄ =
∫

L̄dz = −2L (21)

This will lead to equations (5) and their complex conjugates.
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Figure 2: Interaction of the electromagnetic field in a gain
medium

THE FORWARD-BACKWARD
FORMULATION

In terms of V and I one can define the following new
variables [13]:

C+ ≡ 1
2
(V + I)e−jkzz, C− ≡ 1

2
(V − I)ejkzz (22)

Or vice-versa as:

V = C+ejkzz + C−e−jkzz, I = C+ejkzz − C−e−jkzz

(23)
Thus C+ and C− appear as the amplitudes of forward and
backward waves respectfully (see figure 2) in the case of
propagating modes. Inserting the above variables into L̄
given in equation (21) we obtain for propagating modes:

L̄ = jkz{2
∫

dz[C∗
−C ′

− + C
′∗
+ C+ − C∗

+β + C+β∗

+ C∗
−α − C−α∗ − j

kz

2k2
⊥

|v|2] + (C∗
−C+e2jkzz

− C−C∗
+e−2jkzz − |C−|2 − |C+|2)|Lw

0 } (24)

In which:

α =
1
2
(v − i)ejkzz β =

1
2
(v + i)e−jkzz (25)

At this stage one is tempted to discard the boundary term in
the above equation since it appears to have no effect on the
resulting equations, however, this will lead to unphysical
boundary conditions and thus should be avoided. Taking
the variational derivative we obtain the equations:

C ′
− = −α, C ′

+ = −β (26)

and their complex conjugates which provides a truly elegant
way to compute the field dynamics.

CONCLUSIONS

Three different action principles were obtained in this
work: one in terms of the V modal amplitude leading to

second order equations. Another principle was formulated
in terms of the V, I amplitudes through the quasi Hamilto-
nian concept leading to first order equations. And finally
an action principle in terms of the forward and backward
modes were derived including the correct boundary condi-
tions for those equations. It was outlined how the action can
be used as a basis for a numerical scheme and that different
numerical techniques should be utilized for propagating and
cut-off modes.
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