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Abstract 

techniques. Particle-in-cell codes have been used to 
simulate free-electron masers; however, this is not 
feasible at short wavelengths. Most simulations use a 
slowly varying envelope approximation in both in z and t, 
where the particles and fields are advanced in z using the 
same process as in steady-state simulations and then the 
time derivative describing slippage is applied. We 
describe the inclusion of this technique in the non-
wiggler-averaged code MEDUSA, which is then applied 
to study temporal behavior amplifiers and oscillators. 

INTRODUCTION 
Time-dependent FEL simulations use a variety of 

techniques. Particle-in-cell codes have been used to 
simulate free-electron masers [1,2]; however, this is not 
feasible at short wavelengths. Most simulations use a 
slowly varying envelope approximation (SVEA). One 
such technique assumes that the envelope varies only in z 
combined with a field representation as an ensemble of 
discrete harmonics. This has been shown to be equivalent 
to a time-dependent simulation [3]; however, it is often 
computationally prohibitive. A second technique uses an 
SVEA in both in z and t [4], and the particles and fields 
are advanced in z using the same process as in steady-
state simulations and then the time derivative describing 
slippage is applied. This is used in wiggler-averaged 
codes such as PERSEO [5] in 1-D and GINGER [6] and 
GENESIS [7] in 3-D. We describe the inclusion of this 
technique in the non-wiggler-averaged code MEDUSA 
[8], which is then applied to amplifiers and oscillators. 

THE FORMULATION 
The formulation follows closely on that for the steady-

state formulation [8]. The electromagnetic field is 
represented as a superposition of Gauss-Hermite modes 
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where “l” and “n” are transverse mode numbers, “h” is the 
harmonic number, el,n,h = exp(−r2/wh
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the 

“prime” superscript denotes the total z-derivative, 
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where ωb(z,t)2 = 4πe2nb(z,t)/me for a beam density nb, and 
Fl,n = [2l + nl!n!]−1. Note that the beam density varies to 
account for the temporal profile of the pulse. For a beam 
with a Gaussian energy and phase space distributions, the 
source terms are 
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and we assume, for simplicity, that only the current varies 
over the course of the pulse. The spot size and radius of 
curvature for each harmonic component are given by 
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and δa0,0,h

2 = δa0,0,h
1 2 + δa0,0,h

2 2. These equations 
constitute the source-dependent expansion [9], which is a 
self-consistent adaptive eigenmode representation that 
tracks the optical guiding of the mode based upon the 
interaction with the electron beam 

These field equations are integrated simultaneously 
with the complete Lorentz force equations for an ensemble 
of electrons. Here, we assume that the electron pulse 
shape is parabolic and we divide the pulse into slices 
corresponding to a beamlet one wavelength in length. The 
radiation field is also represented as a superposition of 
slices that correspond to the slices of the electron bunch. 
The initial condition for the radiation is chosen to 
represent a parabolic pulse shape as well. 
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Note that since MEDUSA uses a non-wiggler-averaged 
formalism, the step size in z must be small enough to 
resolve the wiggler-motion, and that the slippage is 
applied on every step. 

AMPLIFIER MODELING 
In simulating amplifiers, the initial radiation pulse is 

chosen to correspond to the electron pulse for a given 
peak seed power. As the electrons and radiation propagate 
through the wiggler, the radiation slips ahead of the 
electrons (one wavelength per wiggler period at 
resonance); hence, the simulation must include additional 
slices of the radiation pulse ahead of the electrons but 
which start at zero power and have no corresponding 
electron slice. 
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Figure 1: Growth of the pulse energy through the wiggler. 
 

As an example showing slippage in amplifiers, we use a 
76 MeV/400 A electron beam with an emittance of 15 
mm-mrad, an energy spread of 0.1%, and a pulse time of 
1 psec. The wiggler amplitude is 7.5 kG with a period of 
2.18 cm, which yields a resonance at a wavelength of 1.06 
microns. A seed power of 1 W is assumed. The growth of 
the pulse energy through the wiggler is shown in Fig. 1. 
Exponential growth is evident and saturation is found 
after about 7.5 m with a 25μJ pulse energy corresponding 
to a peak power of 74 MW. 
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Figure 2: Evolution of radiation pulse shapes versus time. 

 
Radiation slippage through the wiggler results in a pulse 

with both slips ahead of the electrons and distorts in shape 
from the original parabolic profile. This is illustrated in 
Fig. 2 where we plot the normalized power in the pulse at 
various points in the wiggler. The initial pulse is parabolic 
with a 1 psec duration, and the center of the electron 
bunch is at 1.5 psec in the figure. It is clear that as the 
interaction proceeds, the radiation slips significantly 
ahead of the electrons and is distorted in shape and 
narrowed in duration. 
 

10-7

10-5

10-3

10-1

101

103

0 1 2 3 4 5 6 7 8

Po
w

er
 (M

W
)

z (m)

P
sat

 = 113 MW

τ
pulse

 = 1 psec

E
pulse

 ≤ (2/3)P
sat

τ
pulse

 = 75 μJ 

 
Figure 3: Power growth in a steady-state simulation. 

 
Since the slippage time is comparable to the pulse 

duration, we expect that slippage will significantly reduce 
the power and pulse energy relative to that from a steady-
state simulation. For comparison, we show the results of a 
steady-state simulation in Fig. 3 where we find a much 
higher peak power of 113 MW. If we assume that the 
pulse is parabolic and does not distort over the course of 
the interaction, then the pulse energy is given by Epulse = 
(2/3)Pτpulse. This implies that the pulse energy at 
saturation would be about 75 μJ. This dramatically 
illustrates the reductions in performance due to slippage 
when the slippage time is comparable to the pulse 
duration. 

OSCILLATOR MODELING 
The procedure for modeling oscillators in MEDUSA is 

illustrated schematically in Fig. 4 The wiggler is located 
in the center of the resonator. The electron beam is 
injected into the wiggler/resonator and amplifies what is 
initially (i.e., at the entrance to the wiggler) an ensemble 
of vacuum resonator modes [{TEM}l,n]. The mode is both 
amplified and guided in the wiggler; hence, it is focused 
to a smaller spot at the wiggler exit than would be found 
in the vacuum resonator. This “dressed” ensemble of 
resonator modes [ ] is then decomposed into a 
new ensemble of vacuum resonator modes 
[{TEM}l,n

(new)], which is “propagated” back to the wiggler 
entrance where it interacts with another electron bunch. 

{TEM}l,n
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This process is repeated an arbitrary number of times until 
the system reaches a steady state. 

Figure 4: Schematic of oscillator feedback. 
 
In simulating slippage in oscillators, the initial 

condition for the first pass around the resonator is the 
same as for the treatment of amplifiers, but subsequent 
passes must account for cavity detuning. Depending on 
the cavity length, the radiation pulse may arrive ahead or 
behind the electron bunch. Therefore, it is necessary to 
include “blank” radiation slices both ahead and behind the 
electron bunch and to shift the overlap of the radiation 
and electron slices on each pass based on the electron 
bunch repetition rate and the radiation round trip time in 
the resonator. 
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Figure 5: Growth of the pulse energy versus pass. 

 
The example we consider employs a 47.15 MeV/60 A 

(peak current) electron beam with an emittance of 7 mm-
mrad in the wiggler plane and 8 mm-mrad in the plane 
normal to the wiggle plane. For computational simplicity, 
we also assume that the energy spread vanishes. The pulse 
duration is assumed to be 1 psec and the pulse repetition 
rate is 37 MHz, which corresponds to a duty factor of 3.7 
× 10−5. We assume that the wiggler amplitude is 5.5 kG, 
the period is 2.7 cm, and the length is 41 periods. This 
yields a resonance at a wavelength of 3.11 microns. The 
waist size in the resonator is taken to be 628 microns, and 
we assume that 10% of the power is out-coupled. The 
optimal cavity tuning is dependent upon the transit time 
through the resonator and the repetition rate of the 

electron bunches. The optimal cavity length is found to be 
8.102485 m for which we find that the peak pulse energy 
in the resonator is 67 μJ. In view of the duty factor and 
resonator out-coupling, this yields an average output 
power of about 250 W. The evolution of the pulse energy 
versus pass is shown in Fig. 5 for a variety of different 
cavity lengths in the neighborhood of the optimum cavity 
length, and shows a fairly rapid decline in pulse energy as 
the cavity length shifts away from the optimum value. 
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Figure 6: Pulse shape after 40 passes through the wiggler 
for a cavity length of 8.102485 m. 

 
Accounting for this slippage as well as the cavity 

tuning, the distortion of the radiation pulse corresponding 
to the optimal cavity length after 40 passes is given in Fig. 
6, and shows a sharp trailing edge with a more gradual 
decline in the leading edge. We also observe that, due to 
the cavity tuning, the total pulse width has broadened 
although the FWHM width remains about 1 psec. 
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Figure 7: Steady-state oscillator simulation. 

 
The slippage time through the wiggler for this example 

is about 0.4 psec. This is comparable to pulse duration, 
and we would expect that slippage has a negative effect 
on the oscillator power. This is illustrated in a steady-state 
simulation shown in Fig. 7, where we note that in 
comparison, the steady-state simulation for these 
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oscillator parameters yields a peak power of 170 MW. 
Assuming a parabolic pulse shape that is undistorted by 
the interaction, we note that this corresponds to a peak 
pulse energy of about 113 μJ and an average output power 
of about 629 W. 

SUMMARY 
The associated effects of time-dependence and slippage 

have been incorporated into the non-wiggler-averaged 
MEDUSA simulation code, and the results applied to both 
amplifier and oscillator configurations. As expected, when 
the slippage time is comparable to the duration of the 
electron pulses, slippage is seen to have a significant 
negative impact on the FEL interaction. 
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