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Abstract 

Simulations of coherent Smith-Purcell radiation using 2D 
particle-in-cell codes have provided insight into the nature 
of the process, and have generally provided support to the 
viewpoint of the Vanderbilt University FEL group. 
However, if one is interested in terahertz frequencies, the 
need for small meshes and short time intervals makes the 
calculations exceedingly long. In particular, the S-P 
correlation between frequency and angle is only valid at 
distances large compared to the grating size, and may not 
be apparent if the simulation area is too small. With the 
help of the multipole expansion, we show how simulation 
data obtained with a small area may be extended to an 
area of arbitrary size. This enables us to confirm the 
presence of coherent higher order S-P peaks at the 
appropriate angles.  We also isolate the forward and 
backward surface Floquet waves. Evidence for the 
presence of unsuspected components is presented. 

INTRODUCTION 
In attempting to simulate Smith-Purcell (S-P) radiation 

at terahertz frequencies with a 2D particle-in-cell code, 
one is confronted with problems of time and memory, at 
least if the simulation is performed on a PC.  The reasons 
are easy to understand. Typical wavelengths are hundreds 
of μ m, which means that mesh sizes must be tens of μ m. 
The time step is tied to the mesh size Δ through stability 
conditions, and is, typically Δ/c, where c denotes the 
speed of light.  Finally, the overall size of the simulation 
area is determined by the experimental circumstances.  
For example, the Dartmouth College experiment[1]using a 
low energy continuous electron beam has a grating about 
12.7 mm long, and we perform our simulation in an area 
of approximately 20 mm μ 5 mm, with Δ = 10 μ m.  To 
follow the system through one ns takes about 10 hours of 
calculation with the commercially available code we use, 
MAGIC[2]. In contrast the MIT experiment using a 15 
MeV pre-bunched beam[3](at 17.1 GHz) had a grating 10 
cm long, which means that our simulation area must be 
considerably larger than for the Dartmouth set-up. 
However, two ns are all that is needed to get a satisfactory 
simulation, since the beam is already bunched. At FEL 
2005,[4]we reported our first attempts to simulate coherent 
S-P radiation in these two experiments.  While we did 
find some interesting results, we used an unrealistically 
large current in the Dartmouth case, which led to copious 
emission of radiation from the ends of the grating at a 

frequency less than any allowed S-P frequency. This 
corresponded to the evanescent surface wave predicted by 
the theory of Andrews and Brau (AB)[5] but it obscured 
the true S-P signal that we sought.  In the MIT simulation, 
we found that there remained a substantial emission of 
radiation even when we removed the grating.  
Furthermore, although we observed up to 20 harmonics of 
the bunching frequency, we didn’t see the usual S-P 
relation between wavelength and angle.  This is given by 

( ) nL /cos/1 φβλ −= , where λ is the wavelength, L the 
grating period, β the relative velocity (in a plane parallel 
to the grating and perpendicular to the direction of the 
grooves), φ the angle of emission (with respect to the 
beam direction), and the integer n denotes the order.  
While this relation is true, it only holds precisely when 
the radiation is observed at distances large compared to 
both the wavelength and the grating size.  Given the 
constraints of small mesh size, it is impractical to 
simulate in an area large enough to see the wavelength-
angle correlation. 

 
Another problem we encountered was the presence on 

the grating surface of two distinct surface waves.  One of 
these, according to the AB theory, is in resonance with the 
electron beam, while the other, of the same frequency but 
propagating in the opposite direction, is generated by 
reflection at the grating ends.  It is of some interest to 
isolate these two Floquet waves, in order to obtain a direct 
verification of the AB theory, and to determine the 
reflection coefficient when such a wave reaches the 
grating end.  This coefficient may be used in a refinement 
of the AB theory proposed by Andrew, Boulware, Brau 
and Jarvis[6]in order to estimate the start current needed to 
produce coherent S-P radiation in the Dartmouth 
experiment.  In reference 6 an estimate of 50 A/m was 
made, while Kumar and Kwang-Je Kim[7] obtained a 
slightly smaller value of 36.5 A/m.  

 
In this paper we describe two methods we have 

developed to address these problems.  The first method 
we call the Small BoxØBig Box transformation, since it 
allows us to simulate in a small area and extrapolate to a 
much larger area, so as to see the S-P wavelength-angle 
correlation.  While the near-to-far-field transformation is 
the subject of a chapter of Taflove’s monograph[8],our 
simple method uses Finite Fourier Transforms (FFT) and 
fitting procedures readily available in such high-level 
programs as Mathematica and MAPLE, and thus involves 
relatively little effort on the part of the user.  The second 
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method has been developed to extract from a simulation 
the two oppositely moving Floquet evanescent waves, 
which are important only in the neighborhood of the 
grating.  Again, the FFT and fitting capacities of 
Mathematica or MAPLE may be used to execute the task. 

In Section II we describe the Small BoxØBig Box 
transformation as applied to a MIT simulation. In Section 
III we show how to separate the Floquet components from 
a simulation of the Dartmouth set-up. The anomalies 
observed in our fitting procedure reveal an unsuspected 
presence of higher temporal harmonics in the field, as 
well as incipient coherent S-P radiation. Our conclusions 
are given in Section IV.   

SMALL BOXÆBIG BOX 
TRANSFORMATION 

In a source-free half-plane region extending to infinity, 
the magnetic field in the z-direction may be written as 
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where the standard Hankel functions 1
mH  are used and the 

complex quantities ( )ωmb  are the coefficients of the 
multipole field.  They may be written as 
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The azimuthal component of the electric field (cgs units) 
may then be written as 
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The total energy/cm radiated across a semicircle of radius 
ρ is then 
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which reduces, after some manipulations involving the 
Wronskian, to  
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which is independent of the radius. 
In the context of our simulation, we calculate 
( )rkz tB ,,0 φρ , with ( ) 901,180/12 ≤≤−= kkk πφ  and 

( ) NrNTrttr ≤≤−+= 1,/11 , where the time step T/N is  
chosen by MAGIC.  Accordingly, we use FFT rather than 
continuous Fourier transforms, and we perform a FFT at 
each of the 90 angles, obtaining 

( ) ( )( )rkzk tBsb ,,FFT,
~

0 φρφ = , where ( ) Ts /12 −→ πω . 
Then at fixed s, we write 
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and we apply a fitting procedure to determine the ( )sbm
~

 
for 851 ≤≤ m .  Finally we introduce the normalized 
multipole coefficients ( )sbm

ˆ , 
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We may now calculate the magnetic field and the 
azimuthal component of the electric field at any point in 
the source-free region by taking the Inverse FFT of the 
sequence of sums  
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It is often desirable to examine the fields in a given 
frequency range, and this may be accomplished by 
introducing a filter in the Inverse FFT.  We should point 
out that since the FFT assumes a periodic function, the 
time behavior we obtain at an arbitrary point may violate 
causality. However, an ad hoc translation in time allows 
one to find the true pulse shape at the new radius. 

The energy radiated during the interval of time T is 
given by (ergs/cm if ( )sbm

ˆ  is in Gauss) 
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To illustrate this procedure, we plot in Figure (1) our 
simulated ( )tBz (for the MIT set-up) vs. t at a distance 5.5 
cm from the center of the grating, and at angle 89°, with 
its FFT.  
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Figure 1. ( )tBz vs. t and its FFT, φ = 89°, ρ = 5.5cm.  

After performing the operations indicated above, we 
obtain the extrapolated function ( )tBz vs. t at a distance 50 
cm from the center, again with its FFT, which are shown 
in Figure (2).  
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Figure 2. ( )tBz vs. t and its FFT, φ = 89°, ρ = 50 cm. 

The reconstructed signal is smaller than the original, as 
expected, since the fields decrease asymptotically as ρ -1/2.  
Even taking into account the overall reduction in size, the 
reconstructed FFT is quite different from that at small 
radius.  This must be attributed to the fact that for the 
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second harmonic, there is a broad S-P first order peak at 
82°, close enough to our angle of 89° to favor the 
frequency near 34 GHz.  

To indicate how the small box Ø big box 
transformation affects the angular distribution of energy, 
we show in Figure (3) the energy radiated during our 2 ns 
pulse as a function of angle for a band of frequencies 
centered around the sixth harmonic, near 103 GHz.   
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Figure 3.  The angular distribution of energy at 5.5 cm in 
a frequency band centered at 103 GHz. 

For comparison we show in Figure (4) the 
reconstructed distribution of energy as predicted by our 
small box Ø big box transformation with ρ = 50 cm. The 
angles at which coherent S-P radiation is expected in the 
MIT experiment at this frequency are indicated. For both 
distributions we find the same total energy radiated 

45 90 135 180
fHdegL100

200
300
400
500

d2Eêdzêdf HergsêcmL r = 50 cm, band 103 GHz
S-P order 1

2
3

4 5 6

 
Figure 4.  The reconstructed angular distribution of 
energy at 50 cm in a frequency band centered at 103 GHz. 

119.3 ergs/cm, calculated by numerical integration. This 
in good agreement with the direct formula for the energy 
radiated in that band. Results similar to these were 
obtained for the first 20 harmonics.  The prominent peak 
at small angles (8° here) is not S-P radiation but is 
associated with the appearance and disappearance of short 
current pulses, even in the absence of a grating. 

ISOLATING FLOQUET WAVES 
In the AB approach the electron beam interacts with a 

component of an evanescent Floquet wave.  In the 
Dartmouth configuration, the wave has a negative group 
velocity, and the mechanism is that of a Backward Wave 
Oscillator.  Upon reaching the end of the grating, the 
wave is partly reflected, and some of its energy is emitted 

as free radiation.  The magnetic field in the neighborhood 
of the grating is then a sum of two Floquet evanescent 
waves propagating in opposite directions, and one may 
write, 
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The reflected wave is not in resonance with the beam, and 
essentially traverses the grating without change, until it is 
also reflected at the other end, again emitting radiation.  
To better understand this, we have developed a simple 
method for isolating the Floquet waves.  We use the 
“range” command of MAGIC, which measures a 
component of the electromagnetic field along some 
straight line in space (along the x-direction here), at a 
fixed time. An example is shown in Figure (5). 
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Figure 5. Bz vs. x at fixed t and y. Dartmouth Grating. 

 By performing three ranges separated by short time 
intervals, obtaining the spatial FFTs and fitting the three 
complex amplitudes for each wave number k to an 
assumed form ti

k
ti

k ee ωω βα +− , we can empirically 
determine the coefficients αk and  βk. An FFT is shown in  
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Figure 6.  FFT of signal in Figure 5. 

Figure (6).  The prominent peaks are indicated by red 
arrows, and the right-hand side of the figure has been 
multiplied by 20 to make details visible.  The blue arrows 
indicate second and third harmonics of K-kF, the 
component resonant with the beam. Here the frequency ω 
is known (2πf, with f = 432 GHz). By comparing with the 
general expression for Bz, we see that the components of 
the Forward Floquet wave have peaks at kF + pK, while 
the Backward Floquet wave has support at pK-kF.  If we 
multiply the αk by a filter that includes only the peaks at 
kF + pK, and perform the Inverse FFT, we obtain the 
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Forward Floquet waves at each of the three instants.  
Similarly, by filtering around pK-kF, we find the backward 
wave, and both are shown in Figure (7).  
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Figure 7. Forward (blue) and backward (red) Floquet 

waves extracted from signal in Figure 5. 

It is clear from this figure that the forward Floquet wave 
shows little or no growth across the grating, while the 
backward wave shows considerable growth, indicating an 
imaginary part of k of order 4 cm-1.   We note also that at 
both ends of the grating the ratio of the incident to the 
reflected wave is approximately 3:1. 

As a check on our empirical method, which uses a 
least-square method to fit all the FFT components, we 
attempted to see whether the fit is adequate.  This led to a 
somewhat serendipitous discovery that we now discuss.  
If we define  

( ) ( ) ti
k

ti
kk eettB ωω βα −−=Δ −

kFFT , 
the complex number that is a measure of the validity of 
our fit, we may plot its absolute value as a function of 
wave number.  The results are shown in Figure (8). The  
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Figure 8.  Discrepancy ΔB vs. wave number k. 

major anomalies occur at 520 and 780 cm-1, which are 
just the second and third harmonics, respectively, of the 
resonant wave number, 260 cm-1.  They appear also in 
Figure (6).  Upon examining the data, we found that these 
anomalies disappear if we fit using 2ω and 3ω instead of 
ω in our fitting procedure.  That means that there are 
components of the form ( )( )txkKim Fe ω−− , with m = 2, 3, etc.  
Such components are readily found in the FFT analysis of 
the current, and they follow from the non-linear nature of 
the bunching phenomenon.  By an argument based on 
Ampère’s law, modulation of the current must appear as 

modulation in the magnetic field, and that is what we see.  
Aside from these two major anomalies, there appear to be 
several smaller ones.  We attribute these to the presence, 
in small amounts, of the coherent S-P signal 
corresponding to various harmonics and orders.  From the 
S-P relation and the fact that all coherent radiation will 
occur at a multiple of the frequency of the evanescent 
wave, one may derive the following expression, 

Lncmk /2/ πβω −= , 
where n denotes the order, m the harmonic, the period L is 
173  μm, and ω =2π ×4.32×1011 s-1.  Using it we have 
drawn arrows to indicate the wave numbers associated 
with some pairs m, n.  It must be noted that our FFT is 
symmetric, and peaks that should occur for negative k 
values are shown at positive values.  

CONCLUSIONS 
We have presented results concerning our attempts to 

extract information from simulations of coherent Smith-
Purcell Radiation, using a 2-D PIC code.  Two distinct 
methods have been discussed. One permits results 
obtained in a small area to be extended to a larger area.  
In doing so, we see more clearly the coherent S-P 
radiation produced in the MIT experiment with a high-
energy pre-bunched beam.  The second method involves 
fitting the FFT data at three closely spaced times, in order 
to separate the forward and backward Floquet surface 
waves postulated in the approach of Andrews and Brau. 
As a by-product, the presence of second and third 
harmonics of the fundamental bunching component were 
demonstrated, and evidence for tiny amounts of coherent 
S-P radiation was provided. 
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