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Abstract 

Our previous work on the 2D simulation of a coherent 
Smith-Purcell FEL operating in the terahertz domain is 
extended to a systematic study of the dependence on 
various parameters. The important question of the starting 
current required to produce coherent radiation is 
addressed, and our new results are presented. As in our 
previous work we concentrate on two configurations, one 
similar to the Dartmouth S-P FEL, with a low energy 
continuous beam, and the other similar to the MIT 
experiment that used a pre-bunched 15 MeV beam. 

INTRODUCTION 
At FEL 2005[1]we reported on simulations of coherent 

Smith-Purcell (S-P) radiation at terahertz (THz) 
frequencies using a two-dimensional (2D) particle-in-cell 
code, MAGIC.  Two quite different experimental set-ups 
were considered; one similar to the long-running 
Dartmouth College experiments initiated by Walsh[2], 
while the other was similar to the MIT experiment that 
used a pre-bunched 15 MeV electron beam[3].The results 
we presented were rather preliminary and a fuller account 
has recently appeared[4].We remind the reader of the S-P 
relation, ( ) nL /cos/1 φβλ −= , where λ is the wavelength, 
L the grating period, β the relative velocity (in a plane 
parallel to the grating and perpendicular to the direction 
of the grooves), φ the angle of emission (with respect to 
the beam direction), and the integer n denotes the order.  
One of our aims was to verify the analytical model 
proposed by Andrews and Brau[5](AB) and subsequently 
extended by Andrews, Boulware, Brau and Jarvis[6]to 
explain coherent Smith-Purcell radiation. Our results did 
indeed support the viewpoint of Brau and co-workers, that 
the mechanism for coherent radiation is the bunching of 
the initially continuous beam by an evanescent wave that 
is significant only in the vicinity of the grating. The 
frequency of this wave is always less than the minimum 
allowed S-P frequency. The process is unstable in the 
sense that the wave bunches the beam, the beam drives 
the wave and growth occurs, both in time and along the 
grating.  Our simulation of the Dartmouth set-up found 
that this is indeed what happens.  In particular, the 
frequency and axial wave number (in the first Brillouin 
zone) of the simulated grating wave were very close to 
what the model predicts. Since the bunching is inherently 
non-linear, once it becomes significant the current is 
modulated at harmonics of the fundamental frequency, 
and these may correspond to allowed S-P frequencies.  

The radiation emitted then shows both intrabunch (since 
the bunches are small compared to a wavelength) and 
interbunch (since the fields of all bunches over the grating 
add up) coherence. Consequently, the coherent radiation 
occurs only at integer multiples of the fundamental, and 
only at the corresponding S-P angles. However, the 
simulation also revealed a major unexpected effect, 
namely the copious emission of radiation at the 
fundamental frequency.  Indeed, this unforeseen radiation 
made the direct observation of the S-P radiation quite 
difficult. Our simulated grating has a finite length. When 
the evanescent wave reaches the end of the grating, part 
of its energy is emitted as free radiation of the same 
frequency, and part of it is reflected back in the opposite 
direction.  The result is that there are two evanescent 
waves on the grating, which propagate with equal and 
opposite wave numbers.  Only one of these waves is 
resonant with the electron beam, and since the beam-wave 
instability is absolute in the Dartmouth configuration, it 
displays growth both in space and time.  The other 
Floquet wave grows in time only (through reflections), 
but not in space.  In a companion paper we show how 
both of these Floquet waves may be extracted from the 
simulation data. 

For the MIT experiment, since the beam was already 
bunched, the bunching mechanism referred to played no 
role, and the simulation was expected to be 
straightforward.  However, the simulation failed to 
display unambiguous S-P radiation.  In fact, there were 
two distinct problems, first the emission of considerable 
radiation even when no grating was present, and secondly, 
the expected frequency-angle correlation was not 
apparent.  The former has been understood to be a 
consequence of standard electrodynamics. It is associated 
with the appearance and disappearance of a relativistic 
short bunch of electrons. The latter was caused by the fact 
that the S-P relation is valid only at distances large 
compared to the grating size.  Since the MIT grating was 
10 cm long, S-P radiation can be seen clearly only at 
distances of order 40 cm or more from the center of the 
grating.  Since we are dealing with radiation whose 
wavelength is a few hundred μ m, the mesh size in the 
simulation must be kept on the order of tens of μ m.  
Under such circumstances, the computing time and 
memory needed become unreasonable, at least for a PC-
based simulation. In the companion paper we outline a 
simple method we call the Small Box→Big Box 
transformation, which enables us to circumvent this 
difficulty.  While techniques for passing from the near 
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zone fields to the far zone based on Green’s theorem are 
well known[7],our method appears to work quite well.  It 
makes use of Finite Fourier Transforms (FFT) and fitting 
tools available with symbolic manipulation programs 
such as Mathematica or MAPLE.  Once this 
transformation is performed, we see clearly the expected 
coherent S-P radiation at a large number of angles and 
frequencies. 

Since the last FEL conference, other work on coherent 
S-P radiation has appeared, notably by Dashi Li and 
collaborators[8],who also use MAGIC for simulations, and 
by Kumar and Kwang-Je Kim[9]. In their simulations Li 
and co-workers studied the effects both of a single short 
bunch and a periodic train of such bunches passing over a 
grating of the Dartmouth type.  The former showed 
intrabunch coherent S-P radiation, followed by the 
emptying of the evanescent wave from the grating after 
the passage of the bunch.  The latter illustrated interbunch 
coherence, since the second harmonic of the imposed 
bunch frequency was S-P allowed and indeed emerged at 
the expected angle.  The extensive analysis of Kumar and 
Kim, based on the traditional approach of diffraction by 
the grating of the incident electron’s field, yielded a 
dispersion relation quite similar to that obtained by 
Andrews and Brau.  The analysis included a treatment of 
coherent S-P radiation similar to that of a Backward Wave 
Oscillator (BWO), for which a start current is known to 
exist.  Using both numerical and analytical methods, they 
estimated a start current (minimum current needed to 
produce the instability) of 36.5 A/m for a sheet beam 10 
μm above the grating. This is similar to the estimate of 50 
A/m found in reference 6.  

Our attempt to find the start current for the Dartmouth 
configuration is discussed in the second Section, and 
some results on our simulation of the MIT set-up are 
presented in the third Section. Simulation parameters are 
shown in the Table 1. 

Table 1.   Parameters of the Simulations 
Parameters Dartmouth MIT 

beam energy 35 keV 15 MeV 

Current (peak for MIT) variable 25 kA/m 

Beam thickness δ  = 10 μm 1 mm 

Beam-grating distance e = 10 μm 0.7 mm 

Grating period L = 173 μm 1 cm 

Max. wave number K = 363 cm-1 2π cm-1 
Grating groove depth H = 100 μm echelette 

Grating groove width A = 62 μm  

Number of periods N  = 74 10 

External magnetic field Bx = 2 T 0 

Mesh size 8.65 × 8 μm2 (100μm)2 
 

START CURRENT FOR DARTMOUTH 
In Figure (1) we show a contour map of the magnetic 

field Bz in the area of our MAGIC simulation. The beam 
appears as a red line, and one sees cylindrical waves of 
wavelength ≈ 700 μm radiating from the grating ends. 
This is the evanescent wave, predicted by AB. 

 
 
 
 
 
 
 
 
 

Figure 1. Contour map of Bz. 

 
In contrast to our earlier simulations, we have raised the 
grating slightly.  This is more consistent with the physical 
situation, where the grating is not flush with a ground 
plane.  Upon doing so, we found that the height of the 
grating plays a significant role in the reflection at the ends 
of the grating.  In the Dartmouth set-up the system 
behaves like a BWO, with two Floquet waves proceeding 
in opposite directions.  The backward wave has a 
component in resonance with the beam, and it displays an 
absolute instability, with growth both in time and in 
space. The forward wave shows no growth in space, but 
since it is fed by reflection at the upstream end, it does 
grow in time.  We found this to be the case in our earliest 
simulations, with a very large current. In fact, more 
sophisticated analyses, such as those of references 6 and 9 
point out that the boundary conditions at the grating ends 
play an important role in determining the start current.  In 
our companion paper[10],we separate the two Floquet 
waves, and we see that the forward wave is essentially 
constant across the grating, while the backward wave 
grows strongly in the negative x-direction. However, this 
was for a current of 175 A/m, which reached saturation in 
about 1 ns.  In order for the BWO mechanism to work, 
the gain must be sufficient to allow the ratio of the 
backward wave to forward wave be small at the 
downstream end and large at the upstream end. The 
greater the reflection the less is the gain needed to close 
the loop, and in principle the smaller the starting current. 

In order to estimate the start current, we monitor the 
variation with time of the current at the middle of the 
grating.  We filter the signal, and then estimate the gain 
by fitting a logarithmic plot of the summits.  We also note 
the time required to reach saturation, tsat, defined by the 
first maximum of the bunched current. Finally we note 
the ratio of the peak current at saturation to the direct 
current, Isat/I.  Once the details of the simulation have 
been fixed, such as mesh size, beam width, beam height 
above grating, kinetic energy, we then repeat the 
simulations for various currents.  To our surprise, we 
obtained the curves shown below. 
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Figure 2. Gain, tsat and Isat/I vs. current I. 

 
In the shaded region running from 80 to 95 A/m, and 

including three runs at 80, 90 and 95 A/m, no instability 
was observed, even for times of 10 ns.  In contrast for 
currents > 100 A/m, the system always saturated in just a 
few ns.  More astonishingly, at 75 and 76 A/m, the system 
reached saturation.  However, at 50 A/m, it again failed. 
We are unable to understand these results, but clearly 
more work is needed.  As additional evidence, we show 
the MAGIC phase space densities (kinetic energy-x) for 
the 76, 95 and 100 A/m runs. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 3.  Phase space density plots in the Kinetic 
Energy-x plane, for 76 (blue), 95 red and 100 (black) 
A/m. 

The oscillations correspond to an axial wave number of 
260 cm-1, which is what the AB theory suggests.  For the 
76 and 100 A/m runs, the average energy losses are 
roughly 0.5 and 0.8 keV, respectively, while the red curve 
shows neither oscillation nor energy loss.  Again, we can 
only express our surprise at this result.  

 
 

MIT SIMULATION 
 
In our first simulation of the MIT experiment, we 

encountered a major difficulty in trying to identify the 
coherent S-P radiation that was produced.  The beam 
consisted of short pulses (1 ps) produced by a linear 
accelerator functioning at 17.14 GHz. Consequently, the 
only frequencies allowed are integer multiples of that 
frequency. Since the beam energy was 15 MeV, and the 
grating period was 1 cm, it is straightforward to compute 
the frequencies predicted by the standard S-P relation.  If 
we keep only the first six orders, and concentrate on 
angles in the forward direction, we find the curves shown 
in Figure (4).  The harmonics are shown as horizontal 
lines, and each intersection of any of them with any of the 
curves marked “order” corresponds to coherent S-P 
radiation at the angle shown.  Clearly there are a great 
number of possibilities, and for some angles like 49, 65 
and 82 degrees, several frequencies may occur. The 
problem of observing S-P radiation is thus quite complex. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4. Intersections of the harmonics of 17.14 GHz 
with the first six S-P orders. 

The situation was complicated further when we found 
that even if we removed the grating, we still observed 
substantial radiation.  This was clearly not S-P radiation 
but it was present in our simulation.  As we indicated in 
reference 4, the radiation we observed without grating 
may be calculated exactly using classical 
electrodynamics, at least for a sheet beam of infinitesimal 
width. We show in Figure (5) the results of such a 
calculation. The contour map of Bz in a 120 mm ×100 mm 
region of the x-y plane bears a strong resemblance to the 
results of our simulation without grating.  A «plume» in 
which the magnetic field is mainly concentrated 
accompanies each bunch.  The tiny red dots visible 
beneath each bunch indicate a large positive magnetic 
field between the beam and the ground plane.  This 
component is an important contribution even when a 
grating is present, and no attempt to understand our 
simulation can avoid taking it into account. 
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Figure 5.  Contour map of Bz following the predictions 
of classical electrodynamics.  The area shown 
corresponds to 12 cm in x, and 10 cm in the y direction. 

 
In order to illustrate the difficulty of interpreting the 

simulation directly, we show in Figure (6) the Finite 
Fourier Transform (FFT) of  Bz (t) as observed directly in 
our simulation, which was made in a relatively small area, 
12 × 6 cm2.  The observation point is at 5.5 cm from the 
center of the grating, and placed at 65°.  The most 
prominent lines in the spectrum are the forth, sixth and 
eighth harmonics, but only the sixth is an S-P frequency 
at this angle.   
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Figure 6.  FFT of  Bz at position indicated. 

 As outlined in reference 10, we have developed a
procedure for extrapolating the results of our simulation 
to larger distances from the grating.  Shown in Figure 7 is 
the result of applying our procedure to the data obtained 
in the small area simulation, after extrapolation to a larger 
distance from the center, but at the same angle. 
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Figure 7. FFT of Bz following extrapolation. Third, sixth 
and ninth harmonics are more apparent. 

It is clear that the relative importance of the third, sixth, 
ninth and twelfth harmonics, all of which are S-P allowed 
at this angle, has increased.   
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