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Abstract
The free-electron laser (FEL) theory in the collective or 

Raman regime relies on the unstable coupling between 
the radiation and the negative-energy space-charge wave. 
Due to the high density and low energy of electron beam 
a focusing mechanism like an axial magnetic field is 
usually required to guide the beam. It is found that the 
wiggler has direct effect on the right and left waves and 
the wiggler effect on their dispersion relations are of the 
second order in the wiggler amplitude. Due to the fully 
relativistic treatment the dispersion relation is to fourth 
order in wiggler amplitude and it can be used to study 
new couplings between the negative and positive-energy 
space-charge waves as well as between the right and left 
circularly polarized electromagnetic waves.   

INTRODUCTION
Relativistic electron bean injected into an ionized 

plasma channel ejects plasma electrons leaving a positive 
ion core which attracts and confines the beam electron. 
There are important applications in this subject such as 
advanced accelerators  and free-electron lasers (FELs) 

. Ion-channel guiding as an alternative to the 
conventional axial magnetic-filed guiding, was first 
proposed for use in FELs by Takayama and Hiramatsu 

. Experimental results of a FEL with ion-channel 
guiding have been reported by Ozaki at al.  Also, Yu et 
al.  have reported that the combination of ion focusing 
and beam conditioning would lead to high gain FEL 
operation in the soft x-ray regime. Jha and Wurtele 
developed a three-dimensional code for FEL simulation 
that allows for the effects of an ion channel. The 
theoretical studies of this problem with a helical wiggler 
are carried out in the low-gain  and high-gain 
regimes. In Ref 10, the relativistic Raman backscattering 
theory is used to find the FEL dispersion relation with 
ion-channel guiding, in the beam frame of electrons, with 
the left circularly polarized backscattered wave neglected. 
This DR was used to find the growth rate of the FEL 
resonance due to the coupling of radiation with the slow 
space-charge wave. 

The purpose of the present  investigation is to obtain the 
dispersion relation (DR) for the interaction of  all possible  
waves in a relativistic electron bean that passes through a 
one-dimensional helical wiggler magnetic field with ion-
channel guiding. The motion of a relativistic electron 

through the wiggler is analyzed. Three coupled equations 
are derived and a formula for the general DR is obtained. 

ELECTRON MOTION 

Consider a relativistic electron moving along the z axis 
of an idealized helical wiggler magnetic field described 
by  

,sinˆcosˆ zkzkB www yxB                                     (1) 
where  denotes the wiggler amplitude, and wB

wwk 2  is wiggler wave number. In the presence of 
an ion channel, with its axis coincident with the wiggler 
axis, the following transverse electrostatic field is acted 
on the electron beam  
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where  is the number density of positive ions with 
charge e.  The steady-state motion of an electron in the 
above field consists of an axis centred helical motion, 
with radius 

in

||0 vkvR ww , given by Eq. (16) with 
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where cmBe ww , menii
22 2 , m is the 

electron rest mass, e is the magnitude of the charge of an 
electron, and c is the speed of light in vacuum. This 
velocity is related to the axial velocity through  ||v
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Equation (4) is cubic in 22
|| cv  and describes two classes 

of trajectories propagating along the positive z axis of the  
FEL.

 DISPERSION RELATION 

An analysis of the propagation of 
electromagnetic/electrostatic waves in the electron beam 
may be based on the continuity equation, 
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the relativistic momentum equation  
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and the wave equation  
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Here  is the electron density,  is the electron velocity, n v
 is the Lorentz factor corresponding to ,  is the 

electric field, and  is the magnetic field. With the 
unperturbed electron density taken to be independent 
of position and time and the self-fields of the unperturbed 
state neglected, the electron and field variables may be 
expressed in the form 
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The linearized equations for the continuity equation, the 
relativistic momentum equation, and the wave equation 
may be derived as                                                                              

000 nn
t
n

vv ,                                   (13) 

EvvEvvvv
v

002
00

00
1

cm
e

t

BvBvEvvEvv 00202
1111
cccc

wii

vvEvvBvE 000202

2
0 11

iwi
ccc

,     (14) 

vv
E

E 0022

2

2
41

nn
c

e
ttc

.   (15) 

By introducing a new set of basis vectors 
2ˆˆˆ yxe i , 2ˆˆˆ * yxe i , and ze ˆˆ , the 

unperturbed magnetic field, electron density, and 
transverse electrostatic field   can be written as  

*ˆ)(exp2ˆ)(exp2 eeB zikBzikB wwwww ,  (16) 
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The perturbed state is assumed to consist of a 
longitudinal space-charge wave and right and left 
circularly polarized electromagnetic waves, referred here 
as radiation, with all perturbed waves propagating in the 
positive  direction. Accordingly, solution of the system 
of equations (13)-(15) may be assumed as 

z
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)](exp[~ tzkivv LLL ,                                         (25)   

zv and zE are analogous to n ; RE , RR , and 

RB  are analogous to Rv ; LE , LR , and LB  are 
analogous to Lv ; the wave numbers are related to by 

wR kkk ,                                                                 (26)  
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The linearized wave equation yield  
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Similarly, the linearized continuity and momentum 
equations yield  

zvknvkn ~~
0|| ,                                                   (31) 
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where  
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The electron density  n~  may be eliminated in (30) by use 
of  (29) to obtain  

zz E
en

vk
iv

~
4

~
0

|| .                                                     (40) 

with the use of Eqs. (28)-(31) and (40), Rv~ , Lv~  and zv~

may be eliminated in the three components of the 
momentum equation (32)-(34) to obtain  
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where , , , , 0
RD 0

LD R L M , 1R , 2R , 1L , 2L ,

 are defined in the appendix. Here, , , and 
are the uncoupled dispersion relations, i.e., in the absence 
of the wiggler, for the right and left circularly polarized 
electromagnetic waves, and the space-charge wave, 
respectively. Equations (41) and (42) show that the DR 
for the right and left waves, alone, in the absence of the 
other two waves, are 

0 0
RD 0

LD 0

0220 cvDD wRRR ,                                        (44) 

0220 cvDD wLLL ,                                         (45) 
 which indicate that the wiggler has direct effect on the 
right and left waves and the wiggler effect on their DRs 
are of the second order in the wiggler amplitude. On the 
other hand, Eq. (43) Shows that the DR for the space-
charge wave in the absence of the right and left wave is 

, which indicates that the wiggler has no direct 
effect on the space-charge wave. The reason is that the 
transverse helical motion of electrons, due to the wiggler, 
has no effect on the longitudinal oscillations of the space-
charge wave. Therefore, if the electromagnetic waves are 
removed the wiggler effect on the space-charge wave will 

also be removed and the space-charge wave will be 
unaffected by the wiggler in the absence of the transverse 
electromagnetic waves.  

00

The necessary and sufficient condition for a nontrivial 
solution consists of the determinant of coefficients in Eqs. 
(41)-(43) equated to zero.  Imposing this condition yields 
the dispersion relation  
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Equation (46) is the DR for coupled electrostatic and 
electromagnetic waves propagating along a relativistic 
electron beam in the presence of a wiggler magnetic field 
and an axial guide magnetic field. A numerical analysis of 
the general dispersion relation can be used to study 
interactions among all possible waves. In group II orbits, 
with relatively large wiggler induced velocities, new 
couplings between the negative and positive-energy 
space-charge waves as well as between the right and left 
circularly polarized electromagnetic waves are expected 
to be found. These instabilities are distinct from the usual 
FEL resonance.  

APPENDIX:  DEFINITION OF 
QUANTITIES 

The following quantities are used in equations (41)-(43) 
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