WAVE-PARTICLES INTERACTIONS: FREE ELECTRON LASER VS. TRAVELING WAVE TUBE

A. Antoniazzi, Università di Firenze, Florence;
G. De Ninno, LURE, Orsay;
F.D. Doveil, New Affiliation Request Pending, -TBS-;
Y. Elskens, Université de Provence, Marseille;
D. Fanelli, Università di Firenze, Florence;
A.M. Macor, New Affiliation Request Pending, -TBS-;
S. Ruffo, Università di Firenze, Florence

Abstract

Wavel-lparticle interactions are central to the operation of plasmas and electronic devices. Transfer of energy from fast beams to waves enables to employ traveling wave tubes as widel-lband amplifiers for space and communication purposes and freel-lelectron lasers as tunable coherent light sources. Both electronic devices can be modeled by a selfl-lconsistent Hamiltonian system where a finite number N of particles and a finite number M of waves are treated on the same ground through a couple of conjugate variables for each particle or wave [*]. Recently, the exploration of chaotic dynamics of test particles in a specially designed traveling wave tube [*] allowed to test new methods for channeling chaos [**]. The control of the coupled lightl-lelectron dynamics is a topic of paramount importance in view of the optimization of the freel-lelectron lasers performance [***]. The theoretical and experimental analogies between two different experimental configurations can be the source of exciting developments for the control of the wave saturation level and improvement of device performance.

PAPER NOT AVAILABLE