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Abstract

The interaction of a wave with a beam of particles is of
paramount importance in a great number of physical appli-
cations. We here focus on the case of a Free Electron Laser
and review two control strategies aimed at re-shaping the
inner topology of the single-particle phase-space to stabi-
lize the oscillations of the laser intensity in the deep satu-
rated regime.

INTRODUCTION

The interaction between a wave and a bunch of charged
particles plays a central role in many branches of applied
physics ranging from particle accelerators to laser physics.
Generically, this self-consistent interaction leads to an ex-
ponential increase of the intensity of the wave, followed by
an oscillating saturation. Oscillations are generated by the
rotations in phase space of a clustered bunch of particles.

The wave-particle interaction can be cast in a Hamilto-
nian form with N+M degrees of freedom, where N and M
are resprectively the number of charged particles and elec-
tromagnetic waves. Examples include the so called elec-
tron beam-plasma instability, a phenomenon of paramount
importance in the wide realm of kinetic plasma turbulence,
and single-pass high-gain Free Electron Lasers (FELs). In
the following we shall refer to the latter case, focusing in
particular on seeding schemes where a small laser signal
is injected at the entrance of the undulator and guides the
subsequent amplification process [1]. Basic features of the
system dynamics are successfully captured within a simpli-
fied one-dimensional framework discussed in the pioneer-
ing work by Bonifacio and collaborators [2]. The Hamilto-
nian reads:

H =
N∑

j=1

p2
j

2
− δI + 2

√
I

N

N∑

j=1

sin(θj − ϕ), (1)

where I and ϕ stands respectively for the intensity and
phase of the wave, while the N conjugated pairs (pj , θj) re-
fer to the electrons. The detuning parameter δ measures the
average relative deviation from the resonance condition.

As previously anticipated, the theory predicts a linear ex-
ponential instability and a late oscillating saturation for the
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Figure 1: Normalized intensity calculated from the dynam-
ics of Hamiltonian (1).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

θ + φ [2π]

p

Figure 2: Snapshot of the N particles at t = 1000, with
N = 104. The grey points correspond to the chaotic parti-
cles, the dark ones refer to the macro-particle

amplitude of the radiation field, Fig. 1. Inspection of the
asymptotic phase-space, see Fig 2, suggests that a bunch of
particles gets trapped in the resonance and forms a clump
that evolves as a single macro-particle localized in space.
The remaining particles are almost uniformly distributed
between two oscillating boundaries, and populate the so
called chaotic sea [3].

The macro-particle rotates around a well defined fixed
point and this microscopic dynamics is shown to be respon-
sible for the macroscopic oscillations observed at the in-
tensity level. Qualitatively similar observations have been
reported for the case of a Travelling Wave Tube (TWT)[4],
a specially designed apparatus that mimics the plasma in-
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stability and enables to accurately investigate the non lin-
ear regime of the self-consistent wave-particles interaction.
Given the above, it is an interesting problem to define dedi-
cated strategies aiming at regularizing the saturated dynam-
ics that could eventually contribute to improve the perfor-
mance of the aforementioned devices.

The goal of this paper is to show that it is indeed pos-
sible to influence by an external perturbation the dynamics
of the particles and enhance the stability of the system. To
this end we shall consider a mean field type of approach
which constitutes the natural reduction of the original N -
body formulation (1). According to this simplified picture,
the conjugated variables (φ, I) are replaced by two func-
tions of time φ(t) and I(t), the latter being obtained from
direct simultations of the self-consistent dynamics. This in
turn amounts to formally neglecting the action of the elec-
trons on the field, an assumption that holds true in the late
saturated regime.

The N -body Hamiltonian (1) can therefore be reduced
to

H̃N =
N∑

i=1

H1p(θi, pi, t), (2)

where

H1p(θ, p, t) =
p2

2
− 2

√
I(t)
N

cos (θ + φ(t)). (3)

In conclusion, the dynamics of a FEL can be adressed by
monitoring the evolution of a test particle, obeying the
Hamiltonian (3) where the functions I(t) and φ(t) act as
external fields and are here imposed by assuming their sim-
plified asymptotic behaviour as obtained by a frequency
analysis [5] :

2

√
I(t)
N

eiφ(t) ≈ F − ε

K∑

k=1

Wkeiωkt, (4)

in the reference frame of the wave.

TOWARD STABILIZATION: TWO
ALTERNATIVE APPROACHES

Two different control strategies are here shortly dis-
cussed and shown to produce beneficial effects on stability
of the system at saturation. For a detailed account on the
techniques and an extensive report of the main findings, the
interested reader may refer to [6] and [7].

Hamiltonian control of a test particle

First let us consider a Hamiltonian control technique.
The method is based on the introduction of a small and apt
modification of the potential that enables to recreate (al-
ternatively destroy) invariant (KAM) tori in phase space.
The Hamiltonian control addresses systems which are close
to integrable, i.e. whose Hamiltonian can be written as
H = H0 + V , where H0 is integrable and V a pertur-
bation of order ε (compared to H0). The results we use
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Figure 3: Poincaré sections of a test-particle of Hamilto-
nian H1p(θ, p, t).
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Figure 4: Poincaré sections of a controlled test-particle of
Hamiltonian H1p(θ, p, t) + f̃(θ, p, t) (right).

here have been proven rigorously [8, 9]. In practice, it can
be shown that a suitable control term f of order ε2 exists
such that H0 + V + f has an invariant torus at a given fre-
quency ω0. In the present case, and focusing on the late
saturated regime, the perturbation term is associated with
the oscillating part of the intensity.

The calculation of the control term [6] is carried on into
action-angle variables (ϕ, J) and the derivation is not es-
plicitly reported here due to space limitations 1. Instead,
we shall present results of numerical experiments which
clearly demonstrate (see Figs.3 and 4), that, in (θ, p) vari-
ables the analytical control term derived in [6] is success-
ful in reconstructing some invariant tori around the macro-
particle. In other words, it enlarges the macro-particle
which in turn corresponds to enhancing the bunching fac-
tor, a quantity of paramount importance in FEL context.
Finally, it is worth emphasising that according to this ap-
proach the form of the control term is derived and not im-
posed a priori.

1As a side remark, note that the exact change of variables from (ϕ, J)
to (θ, p) presents a singularity at the pendulum separatrices. In order
to implement our control on the whole space, a simplified, but regular,
change of variables is used which mimics the exact one in the region of
the invariant torus predicted by the control
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The residue method

An alternative strategy can be elaborated that enables
to modifying the intrinsic characteristics of the macro-
particle. Contrary to the above technique, a (generic)
parametrized perturbation is here a priori introduced,
which allows to modify the topology of phase-space, by
tuning appropriately the parameters. The residue method
[10, 11, 12, 13] is used to predict the resulting local bi-
furcations, by an analysis of linear stability of periodic or-
bits. Information on the nature of these orbits (elliptic, hy-
perbolic or parabolic) is provided using e.g. an indicator
like Greene’s residue [10, 14], to monitor local changes of
stability in a system subjected to an external perturbation
[11, 12, 13, 15]. As we shall see, this approach enables
one to tune the size, gyration radius and internal structure
of the macroparticle, thus resulting in an effective tool for
the stabilization of the intensity.

Consider an autonomous Hamiltonian flow with two de-
grees of freedom which depends on a set of parameters 2

λ ∈ R
m :

ż = J∇H(z; λ),

where z = (p, E, θ, t) ∈ R
4 and J =

(
0 −I2

I2 0

)
, and

I2 being the two-dimensional identity matrix. In order to
analyze the linear stability properties of the associated pe-
riodic orbits, we also consider the tangent flow written as

d

dt
J t(z) = J∇2H(z; λ)J t,

where J0 = I4 and ∇2H is the Hessian matrix (composed
of second derivatives of H with respect to its canonical
variables). For a given periodic orbit with period T , the
linear stability properties are given by the spectrum of the
monodromy matrix J T . These properties can be syntheti-
cally enclosed in the definition of Greene’s residue :

R =
4 − trJT

4
.

In particular, if R ∈]0, 1[, the periodic orbit is elliptic; if
R < 0 or R > 1 it is hyperbolic; and if R = 0 and R = 1,
it is parabolic.

Since the periodic orbit and its stability depend on the set
of parameters λ, the features of the dynamics will change
under apposite variations of such parameters. Generically,
stability od periodic orbits is robust to small changes of pa-
rameters, except at specific values when bifurcations occur.
The residue method [11, 12, 13] detects these rare events
thus allowing one to calculate the appropriate values of the
parameters leading to the prescribed behaviour in the dy-
namics. This method yield reduction as well as enhance-
ment of chaos.

To illustrate the potentiality of method we shall intro-
duce a parametrized perturbation, in the form [7]:

2At this level λ represents any generic family of parameters that influ-
ence the dynamics of the system
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Figure 5: Poincaré section of a test-particle, described by
Hamiltonian (3). The periodic orbits with r.n. 7 are marked
by plus (elliptic orbit) and crosses (hyperbolic orbit). Ω
stands for the wave velocity.

Hc
1p(θ, p, t; λ) = H1p(θ, p, t)−2λ

√
I(t)
N

cos (2θ + φ(t)).
(5)

Here λ controls the amplitude of the injected wave. Fo-
cus then on λ = 0, which corresponds to the original
Hamiltonian H1p, and consider two coupled Birkhoff peri-
odic orbits, i.e. orbits having the same action but different
angles in the integrable case and having the same rotation
number (r.n.) on the Poincaré section, one elliptic O e and
one hyperbolic Oh (see Fig. 5) 3.

Call Re and Rh the residues of these orbits: We have
Re(0) > 0 and Rh(0) < 0. We then modify the parameter
λ until the following condition is matched :

Re(λc) = Rh(λc) = 0, (6)

at λc = −0.0370 [7]. Bifurcation (6) is associated with the
creation of an invariant torus [13]. This diagnostic is con-
firmed by the Poincar section (see Fig.6) of the controlled
Hamiltonian (5), at λ = λc : The elliptic islands with r.n.
7 have been replaced by a set of invariant tori, leading to
an enlargement of the macro-particle. Note that elliptic is-
lands with r.n. 6 are now present around the regular core.

The associated couple of elliptic/hyperbolic orbits can be
treated similarly as those of r.n. 7, in order to gain further
enlargement of the macro-particle (not reported here).

The control is naturally introduced in the self-consistent
dynamics as :

Hc
N (I, φ, pi, θi, λ) = HN (I, φ, pi, θi)

−2λ

√
I

N

∑

i

cos (2θi + φ),(7)

3Let us recall that the rotation number (or winding number) of a pe-
riodic orbit is the number of times it crosses the Poincaré section before
closing back on itself
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Figure 6: Poincaré section of a controlled test-particle of
Hamiltonian (5), with λ = λc ≈ −0.0370. The periodic
orbits with r.n. 6 are marked by plus (elliptic orbit) and
crosses (hyperbolic orbit). Ω stands for the wave velocity.
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Figure 7: Intensity of the wave at saturation, in the four
regimes : λ = 0,−0.037,−0.0746 and −0.1321 . Further
improvements over this condition are discussed in [7]

where HN is given by Eq. 1. The behaviour of the sys-
tem is investigated in correspondence of the critical values
(λc, λ

′
c, λ

′′
c ) which have been calculated in the framework

of the test-particle model, and identifying successive cor-
rections as outlined in the precedding discussion. Impor-
tantly, the macro-particle is shown to increase also when
operating within the relevant self-consistent context. As
concerns the wave, the control results in a stabilization of
its intensity (see Fig.7) [7].

CONCLUSIONS

In this paper, we focus on the physics of the wave-
particle interaction and consider in particular the case of
a FEL. Control techniques are developed in the framework
of a simplified mean-field description aiming at stabiliz-
ing the laser behavior at saturation. In both cases, the size
of the macro-particle is shown to be increased by adding
a small pertubation to the system. These procedures re-
sult in a low–cost correction in term of energy4. Both ap-

4As concerns the method of residues, the fact that the applied correc-
tions are indeed small is confirmed by the values of λ that are calculated

proaches are utterly general and could be eventually con-
sidered to define innovative strategies aimed at adjusting
the size of the macro-particle, and consequentely enhanc-
ing the bunching factor. In this respect, it is worth stressing
that an experimental test of the Hamiltonian control method
on a modified Travelling Wave Tube has been performed
[16] in absence of self-consistency. Exploring the possibil-
ity of experimentally implementing the above control terms
in both FEL and TWT contexts will be addressed in future
research.
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