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Abstract

We analyze free-electron-laser (FEL) oscillations in a
perfectly synchronized optical cavity by solving the one-
dimensional FEL equations. The radiation stored in the
cavity can finally evolve into an intense few-cycle optical
pulse in the high-gain and low-loss regime. The evolution
of the leading slope of the optical pulse, which is defined
from the front edge toward the primary peak, is found to
play an important role in generating the intense few-cycle
pulse. The phase space evolution of electrons on the sec-
ond pass which interact with the leading slope of a SASE
output pulse is obtained in a perturbation method similar
to that used in our previous study for a SASE FEL. The re-
sulting analytical solution of the leading slope in the second
pass is shown to be approximated by that of a SASE FEL
with FEL parameter greater than ρ. The same perturbation
method can thus be used to the subsequent passes.

INTRODUCTION

The FEL dynamics is affected by the slippage that is
caused by the velocity difference between the electron
bunch and the optical pulse inside an undulator. The group
velocity of the optical pulse becomes slightly slower than
the vacuum speed of light, since the trailing slope of the
optical pulse is mainly amplified due to the slippage. This
phenomenon, called the laser lethargy (see Ref. [1] and
references therein), can be compensated in oscillators by
slightly shortening the optical cavity length from the per-
fect synchronism (δL = 0), where the cavity length exactly
matches with the injection period of the electron bunches.
The FEL dynamics of the oscillators with shorter cavity
length (δL < 0) has been studied extensively [2, 3]. At
δL = 0, the optical pulse centroid continues to be retarded
on successive passes through the undulator, and the opti-
cal pulse finally dissipates, as shown in theoretical studies
[4, 5, 6].

An experiment of a high-power FEL driven by a super-
conducting linac in the Japan Atomic Energy Research In-
stitute (JAERI) FEL facility has however showed that an
intense, ultrashort optical pulse is generated at δL = 0.0 ±
0.1 μm despite the lethargy [7, 8]. The optical power curve
measured with respect to δL is well reproduced by the
time-dependent simulation code based on one-dimensional
(1D) FEL equations [9], if shot-noise effect is included
in every fresh electron bunch. A few theoretical studies
have attempted to explain the FEL oscillations at δL = 0,
proposing that sideband instability [10] or superradiance in
short-pulse FELs [11] is the fundamental physics responsi-
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ble for the lasing at δL = 0. Nevertheless, the underlying
physics responsible for the FEL oscillations at δL = 0 has
not been clearly explained yet.

In this paper, we investigate the FEL evolution at δL = 0
by analytically solving the 1D FEL equations. A set of
nondimensional parameters and the 1D FEL equations used
in Ref. [12] are employed for the present study. The optical
pulse on the first pass, which is equivalent to the output of a
self-amplified spontaneous-emission (SASE) FEL and rep-
resented by the solution of the cubic equation [14, 15, 16],
is reflected back into the undulator for subsequent ampli-
fications in FEL oscillators. The phase space evolution of
electrons on the second pass which interact with the leading
slope of the FEL pulse, which is defined from the front edge
toward the primary peak amplitude in the present paper, is
obtained in a perturbation method similar to that used in
our previous work for the phase space evolution of elec-
trons in a SASE FEL [12]. Consequently, an analytical
solution for the optical growth of the leading slope during
the second pass is derived. The leading slope of the output
pulse is shown to be approximated by that of a SASE FEL
with FEL parameter greater than ρ. The same process can
thus be applied to pass numbers greater than n = 2 and the
evolution of the leading slope with respect to n is obtained
analytically. The output field similar to that of a SASE FEL
accounts for the exponential increase of the field amplitude
in the leading slope from the front edge toward the primary
peak, and the amplitude gradient with respect to the lon-
gitudinal position is shown to increase with n. With the
increasing gradient, the field gain per pass decreases down
to the level of optical cavity loss α, and a self-similar radi-
ation pulse is generated at saturation. The evolution of the
leading slope leads to sustained FEL oscillations at δL = 0
and thus disappearance of the lethargy effect. More details
are described in Ref. [13].

1D FEL EQUATIONS

The dimensionless 1D FEL equations of Colson are used
in the present study under the slowly varying envelope ap-
proximation [17], while the variables used here are similar
to Bonifacio’s variables [16]. The simplest situation is con-
sidered in the present study. The electron beam energy is
given by γ0mc

2 with small energy spread. The initial elec-
tron bunch has a rectangular shape with density of n e and
a uniform distribution in phase. The fundamental FEL pa-
rameter in MKSA units is given by

ρ =
1
γ0

[eawF
√
ne/(ε0m)/(4ckw)]2/3. (1)

Here λw = 2π/kw is the period of the undulator, aw is the
undulator parameter, and F is unity for a helical undulator
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or Bessel function [JJ ] for a planar undulator [16]. The
dimensionless time is defined by τ = 4πρct/λw, so that
δτ = 1 corresponds to the transit time of light through one
gain length of λw/(4πρ). The longitudinal position of the
ith electron is defined by ζi(τ) = 4πρ[zi(t) − ct]/λr, so
that δζ = 1 corresponds to the cooperation length defined
by Lc = λr/(4πρ). Here λr = λw(1 + a2

w)/(2γ2
0) is the

resonant wavelength. The dimensionless field envelope is
defined by

a(ζ, τ) =
2πeawλwF

(4πρ)2γ0
2mc2

E(ζ, τ) exp[iφ(ζ, τ)], (2)

with phase φ(ζ, τ), which is equivalent to Bonifacio’s en-
velope [16]. Here E(ζ, τ) is the rms optical field strength.
The dimensionless energy and phase of the ith electron are
respectively defined by μi(τ) = [γi(t) − γ0]/(ργ0) and
ψi(τ) = (kw + kr)zi(t) − ωrt, where kr = 2π/λr is the
wave number of the resonant wavelength λr. The dimen-
sionless energy μi(τ) also means the dimensionless energy
change at τ from τ = 0, since the energy spread of the ini-
tial electron beam is assumed to be small, i.e., μi(0) = 0.

In the present definition, the evolutions of the field enve-
lope a(ζ, τ), the energy μi(τ) and phase ψi(τ) of the ith
electron during FEL interaction are respectively given by
[5]

dμi(τ)
dτ

= a[ζi(τ), τ ] exp[iψi(τ)] + c.c., (3)

dψi(τ)
dτ

= μi(τ), (4)

∂a(ζ, τ)
∂τ

= −〈exp[−iψi(τ)]〉ζi(τ)=ζ. (5)

The angular bracket indicates the average of all the elec-
trons in the volume V around ζ.

EVOLUTION OF SASE FEL PULSE

The optical field and electron phase space evolutions on
the first pass, which are equivalent to those in a SASE FEL,
are presented in our previous work [12]. The startup pro-
cess known as spectrum narrowing [18] or as longitudi-
nal phase mixing [19] leads to a uniform field in time and
space. The phase of the field φ(0) is almost uniform over
the length Nλr along the propagation direction when the
incident electron beam passes through N undulator peri-
ods [5, 19]. In the present study, the initial uniform field
is assumed to be given by |a(0)|eiφ(0) for simplicity. The
initial field evolves through electric interaction with undu-
lating electrons as it passes through the undulator. The inci-
dent electron beam is assumed to be uniformly distributed
in phase ψi(0) with resonant energy μi(0) = 0 and inter-
acts with the SASE FEL field in the steady-state region due
to the slippage [16]. The evolution of the uniform field as
a function of time is derived from Eqs. (3), (4), and (5), as
described by Colson et al. in Ref. [15].

The electron phase can be expressed as ψi(τ) = ψi(0)+
Δψi(τ) where Δψi(τ) is the first-order perturbation in

a(τ). The field at time τ for the steady-state region where
ζ < −τ is given by

a(τ) = a(0) + i

∫ τ

0

〈e−iψi(0)Δψi(τ ′)〉ζi(τ)=ζdτ
′. (6)

The ith electron interacts with the field in the steady-
state region due to the slippage, and the energy modula-
tion at τ ′ during δτ ′ is given from Eq. (3) by δμi(τ ′) =
[a(τ ′)eiψi(0) + c.c.]δτ ′. The energy change of the ith elec-
tron at time τ , μi(τ), is given by the sum of those modula-
tions during τ :

μi(τ) =
∫ τ

0

{a(τ ′)eiψi(0) + c.c.}dτ ′. (7)

The electron phase perturbation is given from Eq. (4) by

Δψi(τ) =
∫ τ

0

μi(τ ′)dτ ′ (8)

=
∫ τ

0

dτ ′
∫ τ ′

0

{a(τ ′′) exp[iψi(0)] + c.c.}dτ ′′ (9)

Substitution of Eq. (9) into Eq. (6) leads to

a(τ) = a(0) + i

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′
∫ τ ′′

0

a(τ ′′′)dτ ′′′. (10)

The integral equation (10) can be written in a differential
form by taking successive derivatives. The solution is ex-
pressed in the form a(τ) =

∑3
n=1 an exp(αnτ) where the

αn are three complex roots of the cubic equation α3 = i
[14, 15, 16]. When the initial conditions ȧ(0) = ä(0) = 0,
the field at time τ for the steady-state region where ζ < −τ
is given by

a(τ) =
|a(0)|eiφ(0)

3

(
eτe

iπ/6
+ e−τe

−iπ/6
+ eτe

−iπ/2
)
.

(11)
Equation (11) is valid in the linear regime before saturation
when the incident electron beam is resonant.

EVOLUTION OF OSCILLATOR FEL
PULSE

We first study the optical field and electron phase space
evolutions on the second pass (n = 2) in an analytical way
and then show that the analytical method can be applied to
the nth pass with reasonable approximations. At first the
notation n is thus used for n = 2.

FEL evolution on the second pass

The input field for the second pass, an(ζ) = an(ζ, 0), is
the same as the output of a SASE FEL with FEL parameter
ρ except for a decrease of the amplitude due to the cavity
loss α. The leading slope of the input field for the second
pass is therefore given as a function of ζ by

an(ζ) = (|an(0)|eiφn(0)/3)(e−ρnζe
iπ/6

+eρnζe
−iπ/6

+ e−ρnζe
−iπ/2

), (12)
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where ρ2 = 1 and |a2(0)| ≈ (1−α/2)|a(0)|. Equation (12)
can be used where |ζ| < Ls and |ζ| < Lb before the field
reaches saturation. Here Lb is the incident electron bunch
length in units of Lc and Ls = 4πρNw is the slippage
distance. The phase space evolution of electrons during
interaction with the leading slope given by Eq. (12) is quite
similar to that of a SASE FEL. The perturbation method
used in Ref. [12] can be applied to a study of the optical
growth during the second pass, as long as the growth is
small and the field an(ζ) remains almost unchanged during
the FEL interaction. The electron phase can be expressed
as ψi(τ) = ψi(0) + Δψi(τ) where Δψi(τ) is the first-
order perturbation in an[ζi(τ)]/ρ2

n, since the field in the
leading slope divided by ρ2

n is weak even after saturation
except for a narrow range near ζp. When the ith electron is
modulated in energy by interacting with the leading slope,
the energy modulation at τ ′ during δτ ′ is expressed from
Eq. (3) by δμi(τ ′) = {an[ζi(τ ′)]eiψi(0) + c.c.}δτ ′. The
energy change of the ith electron at time τ , μ i(τ), is given
by the sum of those modulations during τ :

μi(τ) =
∫ τ

0

{an[ζi(τ ′)] exp[iψi(0)] + c.c.}dτ ′. (13)

The integration of Eq. (13) after substitution of Eq. (12)
yields

μi(τ) = [2|an(0)|/3ρn] ×
{e−

√
3ρnζi(τ)/2 cos[ψi(0) + φn(0) − ρnζi(τ)/2 − π/6]

−e−
√

3ρnζi(0)/2 cos[ψi(0) + φn(0) − ρnζi(0)/2 − π/6]

−e
√

3ρnζi(τ)/2 cos[ψi(0) + φn(0) − ρnζi(τ)/2 + π/6]

+e
√

3ρnζi(0)/2 cos[ψi(0) + φn(0) − ρnζi(0)/2 + π/6]
+ cos[ψi(0) + φn(0) + ρnζi(τ) + π/2]
− cos[ψi(0) + φn(0) + ρnζi(0) + π/2]}. (14)

The integration of Eq. (8) after substitution of Eq. (14)
yields

Δψi(τ) = [2|an(0)|/3ρ2
n] ×

{e−
√

3ρnζi(τ)/2 cos[ψi(0) + φn(0) − ρnζi(τ)/2 − π/3]

−e−
√

3ρnζi(0)/2 cos[ψi(0) + φn(0) − ρnζi(0)/2 − π/3]

−ρnτe−
√

3ρnζi(0)/2 cos[ψi(0) + φn(0) − ρnζi(0)/2 − π/6]

+e
√

3ρnζi(τ)/2 cos[ψi(0) + φn(0) − ρnζi(τ)/2 + π/3]

−e
√

3ρnζi(0)/2 cos[ψi(0) + φn(0) − ρnζi(0)/2 + π/3]

+ρnτe
√

3ρnζi(0)/2 cos[ψi(0) + φn(0) − ρnζi(0)/2 + π/6]
− cos[ψi(0) + φn(0) + ρnζi(τ)]
+ cos[ψi(0) + φn(0) + ρnζi(0)]
−ρnτ cos[ψi(0) + φn(0) + ρnζi(0) + π/2]}, (15)

where ζi(τ) = ζi(0) − τ is used, which is valid as long as
the electron energy change μi(τ) is small and dζi(τ)/dτ =
−1 holds. Equations (14) and (15) represent the phase
space evolution of the ith electron during the second pass.

The field gain dan(ζ)/dτ caused by the electron mi-
crobunch in units of λr whose initial position is ζi(0) = ζ+
τ is derived from substitution of ψi(τ) = ψi(0) + Δψi(τ)
into Eq. (5) as follows:

dan(ζ)/dτ = (|an(0)|eiφn(0)/3ρ2
n) (16)

×{e(−ρnζe
iπ/6+iπ/6)[1 − e−ρnτe

iπ/6
(1 + ρnτe

iπ/6)]

−e(ρnζe
−iπ/6−iπ/6)[1 − eρnτe

−iπ/6
(1 − ρnτe

−iπ/6)]

+e(−ρnζe
−iπ/2−iπ/2)[1 − e−ρnτe

−iπ/2
(1 + ρnτe

−iπ/2)]},
when |Δψi(τ)| � 1.

The field an(ζ) is sequentially amplified from τ = 0 to
τ = −ζ by the electron microbunches whose initial posi-
tion are ζi(0) = ζ + τ as it passes through the undulator.
The field gain per pass is given by

dan(ζ)/dn = [|an(0)|eiφn(0)/3ρ3
n]

×{−ρnζ[e(−ρnζe
iπ/6+iπ/6) − e(ρnζe

−iπ/6−iπ/6)

+e(−ρnζe
−iπ/2−iπ/2)] − 2[e(−ρnζe

iπ/6) + e(ρnζe
−iπ/6)

+e(−ρnζe
−iπ/2)] + 6}. (17)

The leading slope of the output field for the second pass is
thus given by

an(ζ) + dan(ζ)/dn = [|an(0)|eiφn(0)/3ρ3
n]

×{−ρnζ[e(−ρnζe
iπ/6+iπ/6) − e(ρnζe

−iπ/6−iπ/6)

+e(−ρnζe
−iπ/2−iπ/2)] + (ρ3

n − 2)[e(−ρnζe
iπ/6)

+e(ρnζe
−iπ/6) + e(−ρnζe

−iπ/2)] + 6}. (18)

The amplitude and phase of the output field given by Eq.
(18) are plotted as solid circles in Figs. 1(a) and 1(b), re-
spectively, as a function of ζ. The solid line shows the out-
put field of the second pass obtained in a time-dependent
numerical calculation, which solves Eqs. (3)−(5) with an
input field given by Eq. (12) with ρn = 1 and represented
by the dotted line. In the calculation, the shot-noise effect
is neglected. One can see that the field given by Eq. (18)
agrees well with the numerical calculation where |ζ| < 3.5
but the phase gradually deviates from the calculation where
|ζ| ≥ 3.5. This is because the assumption that the field re-
mains almost unchanged during the passage through an un-
dulator does no longer hold where |ζ| ≥ 3.5 for the second
pass.

FEL evolution on pass numbers greater than 2

The output field of the second pass is equivalent to the
input field for the third pass except for amplitude decrease
due to the optical cavity loss α. If the input field for the
third pass is found to be approximated by Eq. (12), the
same procedure described in the previous subsection can
be used for a study of the optical growth during the third
pass. The dash-dotted line in Fig. 1 shows the field given
by Eq. (12) with ρn = 1.28. The amplitude of this field
is different from that obtained in a numerical calculation
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(solid line) by only 10% to −20% where |ζ| < 5, and the
phase is different from the numerical calculation by only
±0.17 rad. These results suggest that the input field for the
third pass can be approximated by Eq. (12) with ρ 3 = 1.28.
In a similar way, one can obtain ρn of the input field for
pass numbers greater than n = 3 as well. For exampleρ4 =
1.52, ρ5 = 1.73, ρ6 = 1.90, and ρ7 = 2.05.

As ρn increases, ρ3
n − 2 ∼ ρ3

n and Eq. (18) asymptoti-
cally approaches

an(ζ) + dan(ζ)/dn ∼ an(ζ) + [|an(0)|eiφn(0)/3ρ3
n]

×{−ρnζ[e(−ρnζe
iπ/6+iπ/6) − e(ρnζe

−iπ/6−iπ/6)

+e(−ρnζe
−iπ/2−iπ/2)]}, (19)

The field evolution per pass can also be obtained by dif-
ferentiation of Eq. (12) with respect to the pass number n
under the assumption that ρn is independent of ζ as fol-
lows:

dan(ζ)/dn = (|an(0)|eiφn(0)/3)(dρn/dn)

×{−ζ[e(−ρnζe
iπ/6+iπ/6) − e(ρnζe

−iπ/6−iπ/6)

+e(−ρnζe
−iπ/2−iπ/2)]}. (20)

Equation (20) should be equal to Eq. (19) subtracted by
an(ζ) as long as the gain is much higher than the optical
cavity loss and ρn is large enough for Eq. (19) to hold.
This yields

dρn/dn = 1/ρ2
n. (21)

When we assume that Eq. (19) holds when ρn > 2, Eq.
(21) gives

ρn ≈ (3n− 12)1/3 (22)

for n ≥ 7. Substitution of Eq. (22) into Eq. (20) yields

(1/|an(ζ)|)(d|an(ζ)|/dn) ≈ −(
√

3/2)ζ(3n− 12)−2/3,
(23)

when exp(−√
3ρnζ/2) 	 1. Equation (23) shows that

the gain per pass decreases with increasing pass number n.
Please see Ref. [13] for further discussions.
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