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Abstract 
In the paper the results of exact integration of Lorentz 

equation for a free electron in the field of a linear 
polarized standing electro-magnetic wave are presented. 
Standing wave is considered as a sum of two running in 
opposite directions linear polarized waves. Projections of 
equations on coordinate axes can be integrated once. It 
allows us to reduce the task to solution of nonlinear 
equation of the second order for electron coordinate. The 
axis of projection coincides with a wave line. For 
approximate integration of the second order equation the 
expansion on two small parameters are used. Velocity and 
coordinate of electron in parametric form are presented in 
the paper. It is shown that under interaction of a 
relativistic electron with stationary wave there is a 
motion, which has of beating character. The amplitude 
and period of the beating were calculated. 

INTRODUCTION  
The theory of the electron interaction with a standing 

light wave originates in description of the Kapiza-Dirac 
effect [1]. The physical sense of the effect is stipulated 
radiation of electrons in the field of a stationary wave. 
After that sufficiently large amount of papers were 
devoted to the theoretical investigations of electron 
radiation in the field of a light wave. 

The interest to the subject has been revived lately due 
to huge progress in intense laser technique. The latest 
works use both quantum and classical electrodynamics 
approach. 

The main difficulty in using of classical 
electrodynamics approach is determination of solution of 
equations of electron motions in the form which will be 
convenient for analytical calculations of the radiation 
spectrum and for estimations of the electron velocity and 
coordinate evolutions. For example, in basic works [2,3] 
the solving of motion equations is reduced to the solving 
of the equation system of the two first order equations. 
But in this case one can find only approximate solution 
and the solution can be formulate as a function of intrinsic 
time of the electron. Such approach makes calculations of 
the radiation spectrum and other characteristics quite 
difficult. In the paper [4] an electron trajectory in the field 
of a standing linear polarized electromagnetic wave was 
reduced to the solving of nonlinear differential equation 
system with time dependent coefficients. After 
linearization of the system the Hill equations has to be 
solved. 

In the presented paper, the approximate solutions of the 
Lorenz equation for an electron in the field of linear 
polarized standing wave are presented. The standing wave 

is considered as a sum of two running in opposite 
directions waves with the same polarizations. 

Two projections of the Lorenz equation can be 
integrated once [4]. It allows to reduce the task to the 
solving of a second order nonlinear equation. For the 
approximate solution the expanding on two small 
parameters was used. 

In the work the expressions for velocity and coordinates 
of an electron were derived in a form of parametrical 
functions of time. Using [5] and with the help of derived 
formulas one can calculate radiation spectrum of an 
electron in the field of standing linear polarized 
electromagnetic wave. 

As one can see from the derived solutions, the electron 
motion in the standing wave has beating character and can 
lead to electron grouping in the propagation direction. 
The period and amplitude of the beatings were calculated. 

MOTION EQUATIONS 
An electron motion in the field of standing wave can be 

described with Lorenz equation: 
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We will consider the standing wave as a sum of two 
linear polarized running in opposite direction waves:. 
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Substituting (4) in (2) and (3) one can get: 
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Using expression: ( ) ξβ =− 2
1

21mc  (where ξ - is 

electron energy), and expressions (5),(6) we project 
equation (1) on coordinate axes: 
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where 
dt

xd

cx

1=β , 
dt

zd

cz

1=β , 
dt

dy

cy

1=β . 

Equations (7,8) can be integrated once. As a results the 
following expressions can be derived: 

ψββ =− 21/z     (10) 

Ay =− 21/ ββ     (11) 

where zPF ξψ +=   (12) 
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With use of two integrals (10) and (11) one can 

express, ξββ ,, yz  through Ax ,,ψβ  

)1/()1( 22222 Axz ++−= ψβψβ    (14) 

)1/()1( 22222 AA xy ++−= ψββ   (15) 
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Substituting (14-16) to (9) and using expression: 
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one can derive the second order equation for electron 
coordinate x . 
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where 
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Integrating (18), we derive: 
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APPROXIMATE SOLUTION  
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The approximate solution of (21) we will find in the 
form: 
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Integrating (28) and (29) one can get for 21, xx  
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As it is followed from expressions (2-3), at 1≈xβ  

running in the initial propagation direction wave exits 
electron oscillations with larger amplitude than the wave 
running in opposite direction. 

Two last items in (32): 
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At 1≈xβ  an electron motion, which has beating 

character [7] with period T: 
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The maxA  maximum and minA  minimum beating 

amplitude can be described with following expressions  
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Substituting expressions for xβ  and x  from (30) to 

(14) and keeping items of the second order on p  and zε  

one can derive approximate expression for zβ  
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In the same way, substituting expressions for xβ  and 

x  from (30) to (15) and keeping items of the second 

order on p  and zε  we can produce approximate 

expression for yβ : 
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Integrating (37) and (38) we derive dependence 
coordinates z  and y  on time t 
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CONCLUSION  
The expressions derived above, describe the electron 

motion in the field of standing linear polarized light wave 
and allows to calculate spectrum of electron radiation 
with use of methods described in [5,6]. 

Today, it is supposed to use interaction of relativistic 
electron with intense laser beams accumulated in an 
optical cavity for generation of shirt wave radiation. The 
transversal sizes of the beams in the interaction point are 
equal of about several tens of micrometers. For this 
reason, the evaluation of transversal sizes of the electron 

beam during interaction is very actual task. It necessary to 
note, that the largest increasing of the electron beam 
transversal size is produced with the wave running in the 
direction of electron beam propagation and not the wave 
which generates the shirt wave radiation. 
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