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Abstract 
It is widely known that the mode quality of the output 

of free-electron lasers (FELs) is near the diffraction limit. 
In this paper, we analyze the optical mode quality in FELs 
using the M2 parameter, which is an optical analogue of 
the emittance for particle beams and measures the 
divergence of the optical mode. For a perfect Gaussian 
beam M2 = 1 and increases as the mode quality 
deteriorates (i.e., the divergence angle and the higher 
order mode content increase). Thus, the optical mode is 
often described as M2 times diffraction limited in the far 
field. We show how M2 may be calculated in two ways: 
(1) by a direct integration over the transverse mode 
structure, and (2) by allowing the mode to expand beyond 
the wiggler and analyzing the divergence. We then 
simulate a forthcoming experiment at Brookhaven 
National Laboratory using the MEDUSA simulation code 
and show that M2, as expected, is near unity at saturation. 

INTRODUCTION 
It widely known that the mode quality of the output of 

free-electron lasers (FEL) is near the diffraction limit [1-
3]. The question of mode quality is relevant to 
atmospheric propagation of high power FELs [4,5]. 
Numerical analysis has shown that the mode content in 
oscillators is predominantly in the TEM00 mode by 
solution of the paraxial wave equation for a fixed electron 
beam profile and the subsequent decomposition into 
Gaussian optical modes [1]. The optical mode quality was 
observed in the Los Alamos FEL oscillator [2,3] where 
the mode was shown to be near the diffraction limit. The 
mode quality in this experiment was characterized by a 
measurement of the Strehl ratio, which is defined as the 
ratio of the on-axis intensity at the mode waist to the 
intensity of a pure Gaussian mode (TEM00) with the same 
spot size at the lens plane. However, the Strehl ratio is 
difficult to determine for optical modes that differ 
appreciably from a Gaussian. Higher order mode content 
is likely to be more important in single-pass FELs, such 
as Master Oscillator Power Amplifiers (MOPA) or Self-
Amplified Spontaneous Emission (SASE) configurations 
that are operated past saturation. Hence, an alternate and 
less ambiguous measure of beam quality is desirable. 

In this paper, we quantify beam quality by means of the 
M2 parameter, which is an optical analog of the emittance 
for particle beams and provides a measure of the 

divergence of the optical mode [6-8]. It is equal to unity 
for a perfect Gaussian beam (pure TEM00) and increases 
as the mode quality deteriorates (i.e., the divergence angle 
of the mode and the higher order mode content increase). 
Thus, the optical mode is often described as M2 times 
diffraction limited in the far field. The M2 parameter, as 
well as optical mode distortion due to mirror heating was 
measured in the FEL oscillator experiment at Thomas 
Jefferson National Accelerator Facility [9]. This 
experiment produced average powers in excess of 2 kW at 
a wavelength of 3.1 microns. Measurements indicated 
beam quality near the diffraction limit with M2  = 1.1 at 
the output mirror for powers up to about 350 W. As the 
power increased beyond 350 W, M2 increased and 
reached values of about 2 for powers of 500 W. However, 
much of the increase in M2 that occurred at higher power 
increased was attributed to mirror distortions and not the 
wave-particle interaction in the FEL. As a result, the 
mode quality may be improved in high-power oscillators 
using mirrors that compensate for distortions. Note that 
the mode quality in high-power amplifiers is governed 
solely by the FEL interaction.  

In this paper we determine M2 in two ways: (1) by a 
direct integration over the transverse mode structure, and 
(2) by allowing the mode to expand beyond the wiggler 
and analyzing the mode divergence. This is discussed in 
Sec. II. In Sec. III we study M2 in FEL amplifiers using 
the MEDUSA simulation code [10,11] and then simulate 
a forthcoming experiment at the Source Development 
Laboratory at Brookhaven National Laboratory. A 
summary and discussion is given in Sec. IV. 

THE M2 PARAMETER 
A perfect Gaussian beam experiences parabolic 

expansion in which the spot size increases on either side 
of the waist via [12] 

                  
w2 z = w0

2 +
λ2

π2w0
2

z − z0
2,                      (1) 

where w(z) is the spot size, w0 is the minimum spot size 
(i.e., at the waist), λ is the wavelength, and z0 is the 
location of the waist. Note that the Rayleigh range is 
given by zR = πw0

2/λ so that w2(z0 ± zR) = 2w0
2 and the 

optical mode area increases by a factor of two over the 
course of the Rayleigh range. The asymptotic diffraction 
angle is given by tan θD = λ/πw0 = w0/zR. Since the waist 
size is, typically, much less than the Rayleigh range, this 
means that θD ≈ λ/πw0. 
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A similar expression describing parabolic expansion 
also holds for a more general optical beam that includes 
higher order modes and can be written as [6-8] 

                   
W2 z = W0

2 + M 4 λ2

π2W0
2

z − z0
2 ,               (2) 

where the upper case W0 corresponds to the average waist 
size for the overall optical beam, and 

                   
W2 z = 2

dxdyr2I x,y,z

dxdyI x,y,z
  ,                    (3) 

denotes the spot size of the overall optical mode where 
I(x,y,z) is the average (over a wave period) intensity. 
Observe that in the limit of a purely Gaussian optical 
beam, W(z) = w(z) and M2 = 1. As such M2 (≥ 1) is a 
measure of the optical beam quality and is the optical 
analogue of the emittance for particle beams. Note also 
that this definition of M2 can unambiguously deal with 
optical modes that differ markedly from a pure Gaussian, 
unlike the definition of the Strehl ratio. This asymptotic 
divergence angle θD is given by 

                              
tan θD = M 2 λ

πW0

  ,                            (4) 

so that θD ≈ M2λ/πW0 for small divergence angles. This is 
shown schematically in Fig. 1. 

Figure 1: Schematic illustration of parabolic mode 
expansion 
 

In general, the optical mode may be expressed as a 
superposition of Gauss-Hermite modes and we can write 

                             
δA x,t =ex el,n x,yΣ

l,n
δAl,n

1 cos ϕ x,t + δAl,n
2 sin ϕ x,t , (5) 

 

where el,n(x,y) = exp[−r2/w(z)2]Hl[√2x/w(z)]Hn[√2y/w(z)], 
Hl is the Hermite polynomial of order l, ϕ(x,t) = k0z – ωt 
+ α(z)r2/w(z)2 for wavenumber k0 (= ω/c) and angular 
frequency ω, and α(z) describes the curvature of the phase 
front. For propagation in vacuo, the amplitudes δA(1,2) are 
constant, ϕ is the overall phase, and the spot size and 
curvature vary as w(z) = w0[1 + (z – z0)

2/zR
2]1/2 and α(z) = 

(z – z0)/zR. However, the optical mode in an FEL is both 
amplified and guided by the interaction with the electron 
beam so that the amplitudes, spot size and curvature will 
vary in a more complex way along the length of the 
wiggler. Nevertheless, it may be shown that the overall 
spot size is given in terms of this representation by       

           

                                   
W2 z = w2 z

S2

S1
  .                       (6) 

where 

                                  
S1 = 2 l + nl!n!δAl,n

2Σ
l,n

  ,                   (7) 

S2 = 2 l + nl!n!Σ
l,n

l + n + 1 δAl,n
2

 

          + 2 l + 1 l + 2 δAl,n
1 δAl + 2,n

1 + δAl,n
2 δAl + 2,n

2

 
           + 2 n + 1 n + 2 δAl,n

1 δAl,n + 2
1 + δAl,n

2 δAl,n + 2
2 ,  (8) 

and δAl,n
2 = δAl,n

1 2
+ δAl,n

2 2
. Observe that S1 = S2 for a pure 

Gaussian Mode (TEM00) and we recover W(z) = w(z). 
We now discuss the calculation of the M2 parameter. If 

we express the overall field in the form δA(x,t) = 
A(x)êxcos[k0z – ωt +θ(x)], then it may be shown that 

M 2 = dxdyI
− 1

  

     
× dxdyr2I dxdy ∂Ι 1/2

∂r

2

+I
∂θ
∂r

2

 
                                                − dxdyrI

∂θ
∂r

2 1/2
,   (9) 

where the intensity is I = (ωk0/8π)A2. As a result, it can be 
shown that 

               
M 2 =

W2 z
w2 z

2w2 z
W2 z

− 1 − S3
2

S2
2 +

S4

S2

1/2

 ,        (10) 

where 
 
S3 = 2 2 l + nl!n!Σ

l,n
l + 1 l + 2 δAl,n

2 δAl + 2,n
1 −δAl,n

1 δAl + 2,n
2

 
        + n + 1 n + 2 δAl,n + 2

2 δAl,n
1 − δAl,n

2 δAl,n + 2
1  ,  (11) 

          
S4 = Fl,l',n,n'Σ

l,l',n,n'
δAl,n

1 δAl',n'
1 − δAl,n

2 δAl',n'
2   ,          (12) 

and 

    
Fl,l',n,n' = 1

π
dθ

0

2π
dρρ

0

∞
exp −ρ2

 
 

                 × cosθ H l
' ρ cosθ H n ρ sinθ  

                                 + sinθ H l ρ cosθ H n
' ρ sinθ  

                 × cosθ H l '
' ρ cosθ H n ' ρ sinθ   

                               + sinθ H l ' ρ cosθ Hn '
' ρ sinθ   , (13) 

is a coefficient that depends only on the mode indices. In 
the limit of a purely Gaussian mode S1 = S2, W(z) = w(z), 
and S3 = S4 = 0 so that Eq. (10) yields M2 = 1 as expected. 

In principle, if we know the modal decomposition at the 
exit from the wiggler in an FEL (including the mode 
amplitudes, the spot size w and the curvature α), then M2 
can be calculated for the output optical mode using the 
above method. However, if there is significant higher 
order mode content, then it can prove numerically 
arduous to evaluate the Fl,l’,n,n’ coefficients. Therefore, it is 
useful to have an alternate technique for obtaining M2. 
One such technique makes use of the expansion of the 
optical mode. If the spot size is known at three different 
locations beyond the end of the wiggler, then the three 
equations Wi

2 = W0
2 + M4θ0

2(zi – z0)
2 for i = 1−3 can be 

solved for M2 where θ0 = πW0/λ. Thus, 

z0 + zR z0 

z
W0 

√2W0 

W(z) 

θD = M 2 λ
πW0
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                       M 2 =
λ

π zi − z0

Wi
2

W0
2 − 1   ,             (14) 

 
for any choice of i, where 

z0 =
z3 + 2z1 + z2

4  

+ z3 − z2

4
z3 − z1 W2

2 − W1
2 + z2 − z1 W3

2 − W1
2

z3 − z1 W2
2 − W1

2 − z2 − z1 W3
2 − W1

2
 , (15) 

 
and 
 

W0= W1
2+ z1−z0

2 z3−z1 W2
2−W1

2 − z2−z1 W3
2−W1

2

z3 − z1 z3 − z2 z2 − z1  
(16) 

 
This technique can be applied either in experiment or 
simulation. When used in simulation (experiment), the 
optical mode must be allowed to propagate into free space 
and the overall spot size [(3) or (6)] must be calculated 
(measured) at three such points. 

NUMERICAL ANALYSIS 
For simulation purposes, we use the 3-D FEL 

simulation code MEDUSA [10,11] which can model 
planar or helical wiggler geometry and treats the 
electromagnetic field as a superposition of Gaussian 
modes (Hermite or Laguerre) and uses an adaptive 
eigenmode algorithm called the Source-Dependent 
Expansion [13] to self-consistently describe the guiding 
of the optical mode through the wiggler and which 
reproduces free-space diffraction in the absence of the 
wiggler. The field equations are integrated simultaneously 
with the 3-D Lorentz force equations for an ensemble of 
electrons. No wiggler-average orbit approximation is 
used, and MEDUSA can propagate the electron beam 
through a complex wiggler/transport line including 
multiple wiggler sections, quadrupole and dipole 
corrector magnets, FODO lattices, and magnetic chicanes. 

The example under consideration is that of a seeded 
amplifier experiment to be conducted at the Source 
Development Laboratory at Brookhaven National 
Laboratory [14] that will operate at a wavelength of 0.8 
microns using the VISA wiggler [15]. The electron beam 
will have an energy of about 72.3 MeV and a peak current 
of 300 A. The emittance and rms energy spread are 2.0 
mm-mrad and 0.01% respectively. The VISA wiggler is a 
Halbach design using NdFeB magnets and incorporates a 
FODO lattice for stronger beam focusing. The wiggler 
period is 1.8 cm and the maximum on-axis field strength 
is 7.5 kG with a field error of 0.4% and a gap of 6.0 mm. 
The FODO cells have a length of 24.75 cm and each 
quadrupole has a length of 9.0 cm and a focusing gradient 
of 33.3 T/m. Hence, the separation between quadrupoles 
is 12.375 cm. The VISA wiggler was built in segments, 
and the wiggler to be used in the experiment will have 
110 periods of uniform field strength. The photo-cathode 
drive laser is also used to provide the seed for the 

amplifier and can provide up to several tens of MW; 
however, this is larger than needed for the experiment that 
will use about 10-100 kW of seed power for saturation to 
be achieved within the length of the wiggler. 
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Figure 2: Evolution of the power, spot size and beam 
envelopes in the x- and y-directions. 

 
The first case we consider makes use of 34 Gauss-

Hermite modes and assumes a seed power of 10 kW. This 
yields saturation at the end of the wiggler at a power level 
of 115 MW. The evolution of the power, overall spot size 
of the optical mode, and the beam envelopes in the x- and 
y-directions is shown in Fig. 2. Observe that the beam is 
not perfectly matched into the wiggler/FODO lattice since 
the beam envelopes in the x- and y-directions vary in the 
FODO lattice and that the overall mode spot size expands 
and contracts with the beam envelope showing the optical 
guiding of the radiation; however, the guiding is not 
strong enough for the optical mode to follow all the 
variations in the beam envelope. 
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Figure 3: Transverse mode pattern at the wiggler exit for 
a seed power of 10 kW. 

 
The use of 34 modes in the simulation means that very 

high order modes are included. Because of this the 
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method for calculating M2 based on integration over the 
transverse mode profile is numerically arduous, and we 
choose rather to allow the mode to propagate beyond the 
end of the wiggler and use the three-point solution given 
in Eq. (14). This can be accomplished easily in 
simulation simply by terminating the wiggler, after which 
the Source-Dependent Expansion reproduces free-space 
propagation when the resonant wave-particle interaction 
ceases. The result of this calculation shows that M2 = 1.45 
for the optical mode at the wiggler exit. This is close to 
the diffraction limit as expected in FELs and corresponds 
to a near-Gaussian mode pattern as shown in a 
normalized transverse mode pattern in Fig. 3. 
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Figure 4: Variation in M2 versus the number of modes 
included in the simulation showing convergence after 
about 20 modes. 
 

An important issue in modeling the beam quality in 
FELs is the convergence of the simulation with respect to 
the number of modes in the superposition. The number of 
modes required to obtain reasonable values for the 
saturated power is generally smaller than that required to 
obtain an accurate determination of the optical mode 
quality as measured by M2. For example, simulation 
using 6 Gauss-Hermite modes also yields a saturated 
power of 115 MW but the exponentiation length is 
somewhat shorter and M2 = 1.26. Hence, it is important to 
determine the number of modes required to reach 
convergence. This is shown in Fig. 4 for these parameters 
where we plot M2 versus the number of Gauss-Hermite 
modes in the superposition. It is clear from the figure that 
convergence is achieved using about 20-25 modes for M2 
= 1.45. It is important to bear in mind, however, that the 
number of modes required for convergence will vary with 
the specific parameters of interest. In particular, for 
optical guiding to be effective the exponentiation length 
must be shorter than the Rayleigh range. In general, the 
smaller the ratio between the exponentiation length and 
the Rayleigh range, the fewer the number of modes that 
will be needed to achieve convergence. 

SUMMARY AND DISCUSSION 

In summary, we have discussed the determination of M2 
in FELs by two methods. One is a direct calculation based 
upon the mode decomposition at any point within the 
wiggler, and the other relies on a three-point fit to the 
optical mode spot size as it propagates beyond the end of 
the wiggler. These techniques have been applied to an 
example that corresponds to an amplifier experiment at 
Brookhaven National Laboratory. We found that the 
simulation required a relatively large number of higher 
order modes to achieve convergence in the determination 
of M2. While MEDUSA employs a Gaussian modal 
representation of the electromagnetic field, it is likely that 
this implies that alternate techniques using a transverse 
field solver will require a relatively fine mesh to achieve 
the same result. Further, the results indicate that the beam 
quality to be expected is near-diffraction limited when the 
wiggler length is comparable to the saturation length. 
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