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Abstract 
We present a study based on a parametric optimization 

of a Thomson Source operated in FEL mode. This deals 
with the proposed scheme to use a high intensity laser 
pulse colliding with a high brightness electron beam of 
low to medium energy (around 10 MeV). Electrons 
undulating in the incoming laser field may emit radiation 
in a FEL coherent mode as far as some conditions are 
satisfied. A set of simple analytical formulas taking into 
account 3D effects is derived, in order to express these 
conditions in terms of three free parameters, namely the 
wavelength of the colliding laser pulse, the amplitude of 
the ripples in the time profile of the laser field, and the 
peak current carried by the electron beam. A few 
examples of possible operating points are compared with 
results of 3D numerical simulations, showing the FEL 
coherent emission of X-rays in the 0.1 to 5 nm range with 
tens of MeV high brightness electron beams colliding 
with high intensity ps-long laser beams carrying pulse 
energies of about 10 J. 

INTRODUCTION 
It has been recognized by several authors in the past 

[1,5] that  the interaction between a high brightness 
electron beam and a counterpropagating - head-on 
colliding - high intensity laser pulse could lead to 
coherent emission of radiation, in the direction of the 
electron beam motion, according to a FEL-like 
mechanism driven by a collective instability that induces 
exponential growth of the radiation intensity. This 
coherent part of the emitted radiation overlaps with the 
spontaneous incoherent radiation generated by the 
Thomson back-scattering effect. Only recently, however, 
detailed 3D simulations[6] able to model the FEL 
collective instability showed the potential existence of 
this effect under particular conditions of electron beam 
emittance and current as well as laser field amplitude in 
the focal region, where the interaction between the two 
beams occurs. In this paper we derive a set of practical 
analytical formulas describing the existence of operating 
conditions in the dynamical range of the system where 3D 
effects can be mitigated so to allow the onset of the FEL 
instability, hence the generation of coherent radiation in a 
SASE-FEL emission mode. 

Generally speaking, the situation is at all similar to a 
conventional SASE-FEL based on a magnetostatic 
undulator through which the electron beam propagates: 
the magnetostatic field of the undulator is replaced by the 
e.m. field of the incoming laser pulse, which causes the 
electrons to wiggle while they propagate through the 
pulse. Since the laser field is a classical description of a 

flux of real photons (to be compared with virtual photons 
for the case of a magnetostatic undulator), the resonance 
relationship for a Thomson source is at all similar to the 
FEL resonance apart for a factor 4 in the denominator. 

 

 λR =
λ

4γ 2 1+ a0
2 + γ 2ϑ 2( )  (1) 

 
where λ  is the wavelength of the colliding laser pulse, 

γ  the kinetic energy of the electron beam (expressed in 
terms of its dimensionless relativistic factor), λR  the 
wavelength of the forward emitted radiation (within a 
small angle ϑ  around the electron beam propagation 
axis) and a0 is the laser parameter (dimensionless 
amplitude of the vector potential associated to the laser 
field),  given by 

 

                 a0 = 8.5 ⋅10−6 λ P

R0

  (2) 

 
where R0  is the laser focal spot size and P  the peak 

power in the laser pulse (in TW). 
The interaction between the electron beam and the laser 

pulse is assumed to take place in a drift space where no 
external forces (focusing or deflecting) act on the two 
beams, which are tightly focused by their individual final 
focus lens systems, taking them down to micron-size 
focal spots. Under the assumption that the laser pulse has 
a uniform transverse intensity profile of hard edge radius 
R0  in the focus position, we can neglect ponderomotive 
transverse effects on the electron trajectories[7].  
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Figure 1: Electron orbits in the focal region (intersecting 
thin solid lines). Electron beam envelope (bold solid 
lines) and laser beam envelope (dashed lines) are also 
shown. Electrons are moving to the right, laser pulse 
(duration τ ) is moving to the left. 
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As depicted in Fig.1, electrons cross the focus area 
traveling on rectilinear orbits: when they traverse the laser 
field their secular trajectories remain rectilinear, with a 
superimposed slightly wiggling motion. 

 

PARAMETER DEFINITIONS 
We break-up the set of parameters describing the whole 

system into three groups, one for each of the three 
interacting beams: the electron beam, the colliding laser 
beam and the emitted FEL radiation beam, respectivley. 

The system is described by 11 main free parameters: 4 
parameters for the electron beam, summarized in Table 1, 
5 parameters for the laser beam, summarized in Table 2, 
and 2 parameters for the FEL radiation beam, summarized 
in Table 3. Note that units indicated in the tables are just 
the ones used for simplicity in the final set of formulas: 
all intermediate calculations are performed in standard 
MKS units. 

 

Table 1: Electron Beam parameters 

Energy 

γγγγ 

Current 

I  [A] 

Focal spot 

σσσσ0  [µµµµm] 

Emittance 

εεεεn  [µµµµm] 

 
There are some other additional parameters which 

represents ancillary quantities useful for handling the 
system of conditions relating the 11 main free parameters. 
These are: the electron beam beta-function in the focus, 
β0  , which is defined by the usual relation 

 

  σ 0 =
εnβ0

γ
   (3) 

 
the electron bunch rms length, σ z  , and the electron 

beam rms relative energy spread 
∆γ

γ
. These last two 

quantities do not enter in the derivation of the final set of 
formulas: they are only used for an afterward check on 
additional ancillary conditions. 

 

Table 2: Laser parameters 

Wavelength 

 

λ λ λ λ [µµµµm] 

Power 

 

P  [TW] 

Pulse 
length 

τ  τ  τ  τ  [ps]]]] 

Focal 
spot 

R0  [µµµµm] 

Intensity 

ripples 

∆ ∆ ∆ ∆ [%] 

 
Additional parameters for the laser beam are the 

Rayleigh range Z0  , given by 
 

  Z0 =
4πR0

2

λ
   (4) 

 

and the laser pulse energy, defined by U = Pτ  . Note 
that the definition of the laser ripple parameter ∆  is 

 

     ∆ ≡
∆a0

a0

  (5) 

 
which represents the fluctuations of laser field 

amplitude along the pulse, which is assumed to have (at 
∆ = 0) an ideal flat-top time profile. 

 

Table 3: FEL radiation parameters 

Wavelength  λλλλR    [Å] FEL parameter   ρρρρ 

 
Additional parameters for the FEL radiation beam are 

the gain length, Lg =
λ

4πρ
 , and the quantum parameter, 

ρ = ρ
γλR

λC

 (with λC = 0.024 Å). As discussed 

elsewhere[8], as far as ρ ≥ 0.5  quantum effects are 
negligible ant the system can be described by means of 
classical FEL-like equations[6]. 

 

CONDITIONS FOR FEL EMISSION 
Let us now analyze what are the conditions to be 

satisfied by the 11 main parameters ( γγγγ , , , , I    , , , ,     σσσσ0 , , , ,    εεεεn , λ , λ , λ , λ , , , , 
P      , τ  ,   , τ  ,   , τ  ,   , τ  ,  R0   ,   ,   ,   , ∆∆∆∆  , λ  , λ  , λ  , λR    , , , ,     ρ ρ ρ ρ     ) in order to operate the 
Thomson source as a Free Electron Laser. 

The FEL resonance condition 
 

 λR =
λ

4γ 2 1+ a0
2( )  (C.1) 

 
The definition of the FEL parameter 
 

                ρ =
10−2

γ
Iλ4

P σ0
43   (C.2) 

 
Two conditions for optimal geometrical beam overlap 

of the envelopes of the two colliding beams: the first one 
is to ensure that the electrons will observe transversally 
constant undulator field 

 
   R0 ≥ 2σ 0   (C.3) 

 
and the second one is to minimize the hour-glass effect 

in the collision of the two beams 
 
       cτ ≤ 2Z0   (C.4) 
 
Note that we will further check that the condition  
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β0 ≥ Z0  is satisfied (assuring that the electron beam 
envelope is contained within the laser beam envelope). 
However, this condition is not explicitely used in order to 
simplify the following derivation. 

We want of course that the interaction between the two 
beams, i.e. the equivalent undulator length, be longer than 
the FEL saturation length, which is typically set at 10 
times the gain length. Hence 

 
     cτ ≥10Lg   (C.5) 

 
Now we must take into account how 3D effects and 

non-uniformities in the laser filed (which is our undulator 
field) may affect the FEL instability, avoiding 
inhomogeneous broadening effects of the gain bandwidth 
that may damp the onset of the FEL exponential 
instability. We know that the gain bandwidth of a SASE 
FEL is set by ∆λR λR = 2ρ  . This implies that 3D and 
non-uniformity effects must produce bandwidth 
broadening smaller than 2ρ  . 

For a Fourier trasnform limited laser pulse the spectrum 

line width is 
∆λ

λ
=

λ

cτ
, therefore 

∆λR

λR

=
∆λ

λ
=

λ

cτ
, 

hence the condition 

   cτ ≥
λ

2ρ
 (C.6) 

 
The FEL frequency broadening due to fluctuations in 

the undulator field amplitude, in our case represented by 

∆ , is given by  
∆λR

λR

=
2a0

2

1+ a0
2 ∆ , which in turns implies 

 

     ∆ ≤ ρ
1+ a0

2

a0
2   (C.7) 

 
The transverse motion of the electrons in the focal 

region, which is mainly determined by the electron beam 
emittance, produces a random distribution of the angle ϑ  
in the resonance relationship reported in eq.1, which in 
turns induces a broadening of the FEL bandwidth. As 
extensively discussed elsewhere[6,9], the limitation on 
this random angle can be casted in terms of an upper limit 
on the emittance. This criterion is generally known as 
Kim-Pellegrini criterion: it has been generalized in ref.6 
to the expression 

 

                 εn ≤
ZR

LG

λRγ

2π
  (C.8) 

 
whewre ZR  is the Rayleigh range of the emitted FEL 

radiation, ZR =
4πR0

2

λR

  . 

 

FINAL SET OF FORMULAS  
In order to simplify the derivation of a solution for the 

system of equations (C.1-C.8) we assume equalities for 
all the conditions instead of inequalities: this will allow to 
derive the minimum condition that  8 parameters have to 
fulfill, expressed as functions of three free parameters. We 
choose as free parameters the laser wavelength λ , the 
electron beam current I  and the laser ripple parameter ∆ . 

The electron beam parameters must obey: 
 

εn = 0.18λ    (F.1)    ;    γ = 0.05  
I

∆2
3     (F.2) 

σ 0 = 0.21λ / ∆  (F.3) ;  β0 = 0.009λ  
I

∆5
3   (F.4) 

 
the ancillary condition β0 ≥ Z0  , as anticipated, is 

respected if I > 576  ∆2 , which is easily satisfied, since 
∆  assumes values definitely lower than 0.1, while the 
beam curent I  has expected values in excess of several 
hundreds Amps. Note that the additional condition 
∆γ γ ≤ ρ  has to be satisfied, though it was not 
explicitely considered in the derivation. 

The laser parameters must obey: 
 

P = 0.0018 ∆   (F.5) ;   U =18.6λ ∆2  (F.6)  ; 
 

 a0 =1.   (F.7)    ;   τ =1.1⋅10−8 λ ∆    (F.8)  ; 
 
Z0 =1.6λ ∆    (F.9) 
 
The FEL radiation is characterized by: 
 

λR = 200λ  
∆4

I
2

3    (F.10)  ;  ρ = 0.25∆   (F.11) ; 

 

LG = 0.32λ /∆    (F.12)  ;   ρ =1012 λ  
∆5

I
3   (F.13) 

 

EXAMPLES  
A relevant example is for the case of a CPA Ti:Sa laser 

system, which is nowadays capable of delivering fs to ps 
long pulses carrying energies in excess of a J, focused 
down to micron-size spots. In this case, setting 
λ = 0.8  µm , the formula set (F.1-F.13) reduces to the 
following (expressing ∆  in units of %): 

 

εn = 0.14  µm ; γ =1.08  
I

∆2
3  ; σ 0 =

1.4

∆
 µm  
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β0 =
0.015

∆

I

∆2
3  [mm]  ; P =

0.18
∆

 [TW] ; 

U =
0.15
∆2 [J] ; τ =

0.85
∆

 [ps] ; Z0 =
0.13

∆
 [mm] ; 

λR = 3436∆
∆

I
2

3  [Å] ; ρ = 2.5 ⋅10−3∆  ;  

LG =
26
∆

 [µm]  ;  ρ = 386∆
∆2

I
3  . 

 
We take into account now two specific examples, one 

in the classical SASE-FEL regime, the other in the 
quantum regime: all parameters now depend only on the 
beam current and the laser ripple parameter. 

 
1)   we set ∆ = 0.15  %  ; I =1500  A :  we find 

 
εn = 0.14  µm ;   γ = 44  ;   σ 0 = 3.7  µm ; 
β0 = 4.1 mm  ;  P =1.2  TW  ; U = 6.6  J  ; 

τ = 5.6  ps  ;  Z0 = 0.85  mm  ; λR = 2.1  Å  ; 

ρ = 4.⋅10−4  ;  LG =159  µm  ;  ρ =1.4  . 
 

2)   we set ∆ = 0.05  %  ; I = 2500  A :  we find 
 
εn = 0.14  µm ;   γ =108  ;   σ 0 = 6.4  µm ; 
β0 = 30  mm  ;  P = 3.5  TW  ; U = 60  J  ; 

τ =17  ps  ;  Z0 = 2.5  mm  ; λR = 0.35   Å  ; 

ρ =1.2 ⋅10−4  ;  LG = 531 µm  ;  ρ = 0.2  . 
 
The paremeter values predicted for case 1), which is in 

the calssical regime, are in agreement with the results of 
3D simulations reported in ref.6,9, where a 15 MeV 
electron beam carrying 1.5 kA of current, focused down 
to 10 µm rms focal spot size, was considered colliding 
with a Ti:Sa pulse with a0 = 0.8 , and a 20 µm spot size, 
which corresponds to a power of 5.5 TW. The saturation 
of the FEL instability is reached, for an emittance of 0.44 
µm, at 4 ps of laser pulse length, implying the need of 22 
J of laser pulse energy and an effective gain length of 
about 120 µm.  The radiation wavelength was 3.64 Å. 
Since these simulations were performed before deriving 
the set of formulas reported in this paper, the agreement is 
only on a general frame. More detailed comparisons 
between this set of formulas, that are meant to drive the 
initial choice of parameters for the simulations, and the 
simulation results, will be the subject of a future work. 

As a last remark we report here the results of 1D 
simulations (performed with a code described 
elsewhere[10]) evaluating the effects of laser ripples on 
the growth of the FEL instability, taking same laser and 
electron beam parameters as for the previously mentioned 
3D simulations. The laser amplitude modulation was 

taken as ∆ sin k fluctz + ct( ). The FEL saturation intensity 

is plotted as a function of ω fluct ωL   (ωL ≡ 2πc λ ) for 

different values of the laser ripple parameter ∆ . 

 
Figure 2: Saturation intensity in presence of laser ripples. 

 
It is clearly visible in Fig.2 how the FEL instability is 

damped, i.e. the exponential growth is no longer attained,  
when ∆  assumes values greater than a few percent, for 
almost any value of the modulation scale length k fluct

. 

Also, the system seems to tolerate laser amplitude 
modulations occurring on a scale much shorter than the 
gain length, as indicated by the fact that the saturation 
intensity goes to zero for any value of ∆  when the scale 
of the laser modulation gets close to gain length, i.e. when 
LG/λ =ωfluct/ωL=1/4πρ = 0.0055 .  
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