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Abstract 
 In this paper we present a three-dimensional (3-D) 

laser pulse shaping scheme that can be applied for 
generating ellipsoidal electron bunches from a 
photoinjector. The 3-D shaping is realized through laser 
phase tailoring in combination with chromatic aberration 
in a focusing optics. Performance of an electron beam 
generated from such shaped laser pulses is compared with 
that of a uniforma ellipsoidal, a uniform cylindrical, and a 
Gaussian electron beam.  PARMELA simulation shows 
the advantage of this shaped beam in both transverse and 
longitudinal performances. 

INTRODUCTION 
The emittance of an electron beam is governed by the 

emittance at its birth and the growth during its 
propagation. If the beam is only subjected to linear force, 
the latter can be fully recovered with proper beam 
compensation. It is well known that an ellipsoidal beam 
with uniform charge distribution has a linear space-charge 
force [1-3] and hence the most expected distribution for 
modern high-brightness beams. Recently, several 
researchers looked at practical ways of generating such 
ellipsoidal beams, including self-evolving [4], cold 
electron harvesting [5], and laser pulse manipulations 
including spectral masking, pulse stacking, and dynamic 
spatial filtering [6]. In-depth analysis shows that in 
practical situations, the ellipsoidal beams do generate 
beam with lower emittance than Gaussian and cylindrical 
beams [1, 6-8]. Applications for such high-brightness 
beams include next-generation light sources such as the 
Linac Coherent Light Source (LCLS), high-energy 
colliders such as the International Linear Collider, as well 
as energy-recovery linacs (ERLs).  

LASER PULSE SHAPING 
To generate an ellipsoidal beam directly from the 

photocathode, the laser pulse has to be shaped in 3-D. It is 
well known that the longitudinal laser pulse shape can be 
manipulated by controlling the phase space using 
techniques such as DAZZLER [9] or SLIM [10]. One 
essence of this phase modulation is to control the phase 
and amplitude at certain frequencies at the same time. In 
the meantime, we notice that the instant frequency of a 
laser pulse is related to the phase by ω(t) = dφ(t)/dt. This 
gives a way of actively controlling the focal size of the 
laser as a function of time using the chromatic aberration 
of a common lens, of which the focal length can be 

expressed as [11]  
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where R1 and R2 are the radius of curvature of the first 
and second surface of the lens, respectively, and n is the 
frequency-dependent refractive index. Clearly, the time-
dependent frequency can then be mapped onto a time-
dependent focal length. For an observer at the focal plane 
at a nominal frequency ω0, this is equivalent to a time-
dependent defocusing of the beam of 
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where we assume the frequency range is small and β = 
dn/dω is constant. For a Gaussian beam this translates into 
a time-dependence of the beam size at the nominal focal 
plane, 
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Here, w0 = Νλ0/π is the beam waist at the nominal 
wavelength λ0, and N is the numerical aperture. For δf >> 
w0, we have asymptotically, 

N

tf
tw

)(
)(

δ
≅ .     (3a)  

To generate an ellipsoidal outline, the transverse beam 
size should be of the form:  
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Here, W is the maximum transverse beam size at t = 0 and 
2T is the laser pulse duration.  

From Eqs. (3-4), we have   
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where Δω = (n0-1)NW/βf0 is the bandwidth of the pulse; 
hence the phase of the pulse is 
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To make the pulse intensity constant over time, i.e., 
|A(t)|2/w(t)2 = constant, the amplitude of the pulse is thus 
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With a transverse top-hat spatial profile, the field E(t) = 
A(t)exp[iφ(t)] represents a 3-D ellipsoidal pulse at the 
nominal focal plane at λ0. The time domain representation 
of the pulse and its spectrum are shown in Fig. 1.    
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Note that the above model used Gaussian beam 
geometrical optics, and the effects of group velocity delay 
(GVDE) and group velocity dispersion (GVDI) due to the 
varying thickness across the aperture of the lens are not 
included [11]. It does not take into account the wave 
property of the light. To evaluate the effects of GVDE and 
GVDI, we use the method elaborated by Kempe et al. [12] 
to calculate the temporal-spatial distribution of the pulse 
near the focus of a lens. The calculation assumes a 
collimated beam with top-hat intensity distribution for the 
input and was performed in the frequency domain. The 
final result was Fourier transformed into the time domain 
to give the laser intensity distribution at the focal plane as 
a function of time. Figure 2 shows one example of such a 
shaped pulse generate by sending a pulse in Fig. 1 though 
a zone plate (a zone plate has similar chromatic aberration 
as a lens).  

Clearly, this shaped pulse differs from an ideal 
ellipsoid. It has substantial substructures. The deviation 
from an ideal ellipsoidal is not unexpected due to the 
group delay across the plate, which is the source for the 
distortion at the beginning and the end of the pulse. This 
has been studied theoretically and experimentally by a 
few authors and is an important effect in focusing short-
duration, short-wavelength laser light [12].  

The substructure is due to the fringes typical of the 
Fourier transform of a square waveform. As is shown 
below, those substructures seem to have minimum impact 
on the performance of the beam.  

BEAM SIMULATION 
To evaluate the performance of this shaped laser beam, 

preliminary simulations using PARMELA were 
performed and compared with other beam shapes for the 
following setting.  

The simulation followed a setup for the design of the 
electron cooling ring injector for Relativistic Heavy Ion 
Collider [13]. The gun is a 1.5-cell rf gun at 703.75 MHz 
with maximum field on axis of 29.5 MV/m and maximum 
field on surface at 49.3 MV/m. The rf initial phase is set 
at 40 degrees. Beam distortion due to image charge is 
considered. The gun is followed with a drift space before 
entering a linac.   

A series of simulations were performed using 
PARMELA. The simulations compared the performance 
of the 3-D laser pulse against three standard cases (see 
Table 1): c) a perfect ellipsoidal beam, d) a cylindrical 
beam, and e) a transversely uniform but longitudinally 
Gaussian beam. For the shaped beam, two cases were 
tested: a) without considering the substructures and b) 
with. The simulations use the parameters listed in Table 1. 
Both the longitudinal and the transverse emittances are 
compared at the exit of the gun. In total, 46,600 particles 
are used in each simulation, representing 0.15 nC of 
charge. The low charge is used due to the relatively low rf 
field in this setup.  

The emittances as a function of the propagation 
distance are shown in Fig. 3. In general, the performances 
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Figure 1: Laser pulse calculated using Eqs. (6) and 
(7). The intensity and phase in the time domain (top) 
and its spectrum (bottom). 
 

 
Figure 2: An ellipsoidal laser pulse. The isosurface plots show the structure at different laser intensities of 0.05, 0.1, 
0.15, and 0.2. The pulse is generated using a zone plate with 20-mm  diameter  and 150-mm focal length at 249 nm. 
The pulse parameter is shown in Table 1, case b.  
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Figure 3: Transverse (a) and longitudinal (b) emittances as a function of propagation distance. The labels correspond 
to those in Table 1. Clearly, the shaped pulse has a better performance in comparison with those of the cylindrical 
and Gaussian form, even with the presence of the substructures shown in Fig. 2.  The gun exit is located at 48 cm, 
followed a drift space.  

of the shaped-pulse cases closely trail the performances of 
the ideal ellipsoidal beam in both longitudinal and 
transverse emittances. More remarkably, the substructure, 
as shown in Fig. 2, has almost no impact on the 
performance of the beam in this setup. It will be 
interesting to perform simulations with bending magnets, 
such as a chicane structure to evaluate the influence of 
coherence transition radiation, which is detrimental to 
cylindrical and Gaussian beams but has minimum impact 
on an ideal ellipsoidal beam. One simulation indicates that 
after accelerated to high beam energy, the ellipsoidal 
beam shape will be destroyed but the low emittance of the 
beam is preserved [8], making it favorable for application 
in free-electron lasers such as LCLS and ERLs. 

SUMMARY 
We described a scheme for generating an ellipsoidal 

laser pulse and performed preliminary simulations 
comparing the electron beam generated from this laser 
beam with an ideal ellipsoidal beam, a cylindrical beam, 
and a Gaussian beam. It is shown that although the beam 
generated still defers from an ideal ellipsoidal beam, it has 
clearly better performance than a cylindrical beam and a 
Gaussian beam in providing smaller transverse and 
longitudinal emittance.  Further beam simulations are 

needed to investigate the coherent synchrotron radiation  
effect for setup relevant to LCLS and future ERLs. 
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Table 1. Initial Beam Conditions 
 Length (ps) Radius (mm) 
a.Shaped, no 
substructure 

17  1.28  

b.Shaped, 
substructure 

17  1.28 

c. Ideal ellipsoid 18  1.28  
d. Ideal cylinder 18  1.13 
e. Ideal Gaussian σ = 3.82, 

truncated at 9 
1.13 
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