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Abstract

Intense beams with large angular momentum have im-
portant applications in electron cooling and in producing
flat beams suitable for ultrafast x-ray generation, Smith-
Purcell radiators, and possibly for a future linear collider.
To gain a basic understanding of the influence of beam an-
gular momentum in an otherwise space-charge-dominated
beam, the behavior of such a beam in free space will be
examined here, in particular, beam spreading due to space-
charge force, as well as emittance oscillation. Drift space
is an important part of a split photoinjector and plays a sig-
nificant role in emitance compensation of a high-brightness
photoinjector.

INTRODUCTION

By immersing the cathode in a magnetic field, beam
with (large) angular momentum can be created and is re-
ferred to as “magnetized” beam. High-intensity magne-
tized beams have important applications in electron cool-
ing and flat-beam generation. The emittance oscillation of
a non-magnetized beam in the drift space of a split pho-
toinjector has some generic properties such as the “double
minimum” feature [1], which has been explained by space-
charge induced beam spreadings of individual slices [2].
Here, we generalize the technique used in [2] to examine
the influence of beam angular momentum on beam spread-
ing and emittance oscillation in drift space.

For a round beam in an axisymmetric channel, the beam
envelope is governed by the reduced beam envelope equa-
tion [3, 4]

σ̂′′ +
κ

β2γ2
σ̂ − κs

β2γ2

1
σ̂

− ε2

σ̂3
= 0. (1)

where σ̂ =
√

βγ σ is the reduced envelope, κ represents
the external focusing, and perveance κs = I/2IA gives
the space-charge defocusing. Here, we consider uniform
non-accelerating channels with constant κ and κs. In a
drift space, κ = 0 and κs decreases somewhat due to
longitudinal debunching, which will be ignored here. The
emittance ε is conserved and may contain two parts: ther-
mal emittance and angular momentum. Although angu-
lar momentum is correlated motion and intrinsically dif-
ferent from random thermal emittance, from the beam en-
velope evolution point of view, these two types of emit-
tances make no difference. In high-brightness photoinjec-
tors, the thermal emittance is sufficiently small such that
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a non-magnetized beam can be considered space-charge
dominated. However, the existence of beam angular mo-
mentum qualitatively changed the property of the envelope
equation by addding a significant emittance term. In the
following, we present preliminary exploration of the effects
of angular momentum. Because we will only consider non-
accelerating beams, βγ = 1 is set in the following sections
to simplify the notation. By the same token, we will use σ
instead of σ̂ for the reduced envelope as well.

BEAM SPREADING IN A UNIFORM
NON-ACCELERATING CHANNEL

In a uniform non-accelerating channel, the coefficients
in the beam envelope equation are all constants. The corre-
sponding envelope Hamiltonian (with the setting βγ = 1)

H =
p2

2
+ κ

σ2

2
− κs ln(σ) +

ε2

2σ2
(2)

is a constant of motion, whose value can be expressed with
the initial σ0 and σ′

0. Thus, we have the first integral

σ′2 + κσ2 − κs ln σ2 +
ε2

σ2
= σ′

0
2 + κσ2

0 − κs ln σ2
0 +

ε2

σ2
0

.

(3)
The beam envelope is bounded by the potential well [4].
The lower bound is due to space-charge defocusing and
emittance pressure. If any, the upper bound is due to ex-
ternal focusing. It reaches an extreme size σm at σ′ = 0,
which can be determined by

σ′ 2
0 +κσ2

0−κs ln σ2
0+

ε2

σ2
0

= κσ2
m−κs ln σ2

m+
ε2

σ2
m

. (4)

Note that in drift space, i.e., without external focusing,
σ′′

m > 0, there will be a beam waist for a converging beam.
With external focusing, σm may be a minimum or maxi-
mum depending on the sign of σ ′′

m. From these equations,
σ′ can be solved as

σ̃′ =
σ′

σm
= ±

√
κ (1 − σ̃2) +

κs

σ2
m

ln σ̃2 +
ε2

σ4
m

(
1 − 1

σ̃2

)
,

(5)
where σ̃ ≡ σ/σm. The sign depends on whether the beam
is converging (−) or diverging (+). By integrating Eq. (5)
we obtain the solution of the beam envelope as

s =
∫ 1

σ0
σm

sign(σ′
0) dx√

κ (1 − x2) + κs

σ2
m

ln (x2) + ε2

σ4
m

(
1 − 1

x2

)
+

∫ σ
σm

1

sign(σ′) dx√
κ (1 − x2) + κs

σ2
m

ln (x2) + ε2

σ4
m

(
1 − 1

x2

) . (6)
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This integral cannot be expressed with elementary func-
tions. In the case κ = κs = 0, this integral yields the
well-known hyperbola envelope for a bunch of free par-
ticles. For a space-charge dominated beam in free space
(κ = ε = 0), this integral yields the so-called universal
beam-spreading curve for σ/

√
κs, which is independent of

slice perveances. However, for a magnetized beam, there is
a non-zero emittance term. Thus, the beam perveance can
not be scaled away from the envelope equation. Therefore,
beam spreading of a magnetized beam will have nontrivial
dependence on beam perveance, and there is no universal
beam-spreading curve anymore.

ENVELOPE EVOLUTIONS NEARBY A
REFERENCE ENVELOPE

The relative motions of various beam slices are re-
sponsible for the variation of projected emittance in high-
brightness photoinjectors. Thus, it is interesting to exam-
ine the evolution of envelopes nearby a reference envelope.
Assuming small deviations, we expand a slice envelope
around the reference envelope (σ̄, σ̄ ′) as(

σ
σ′

)
=

(
σ̄
σ̄′

)
+

∑
α

(
∂qα σ̄
∂qα σ̄′

)
δqα , (7)

where δqα represents a small deviation in certain parameter
qα. Here, we consider the deviations in the initial values
δσ0 and δσ′

0, as well as the slice perveance δκs, assuming
all slices have the same emittance and angular momentum.

To compute the partial derivatives with respect to σ0, we
take derivatives on both sides of Eq. (6) with respect to σ0

and use Eq. (5) for simplification, which yields

0 =
1

σ′/σm
∂σ0

σ

σm
− 1

σ′
0/σm

∂σ0

σ0

σm
+

∂σ0σm

σm
Fx, (8)

where Fx denotes the integral,

Fx =
∫ 1

σ0
σm

sign(σ′
0)

[
κs

σ2
m

ln
(
x2

)
+ 2 ε2

σ4
m

(
1 − 1

x2

)]
dx[

k (1 − x2) + κs

σ2
m

ln (x2) + ε2

σ4
m

(
1 − 1

x2

)]3/2

+
∫ σ

σm

1

sign(σ′)
[

κs

σ2
m

ln
(
x2

)
+ 2 ε2

σ4
m

(
1 − 1

x2

)]
dx[

k (1 − x2) + κs

σ2
m

ln (x2) + ε2

σ4
m

(
1 − 1

x2

)]3/2
.

Thus, ∂σ0σ can be solved as

∂σ0σ =
σ′

σ′
0

+
σ′

σm
∂σ0σm

(
σ

σ′ −
σ0

σ′
0

− Fx

)
, (9)

where ∂σ0σm can be obtained by differentiating Eq. (4) as

∂σ0σm =
κσ0 − κs/σ0 − ε2/σ3

0

κσm − κs/σm − ε2/σ3
m

=
σ′′

0

σ′′
m

, (10)

which is non-zero unless staying at equilibrium.

Similarly, taking derivatives on both sides of Eq. (6) with
respect to σ′

0 yields the derivative ∂σ′
0
σ. Combined with

Eq. (9), they give the first two expressions in the following
sets of four derivatives:

∂σ0σ =
1
σ′

0

(
σ′ − σ′′

0 ∂σ′
0
σ
)
, (11)

∂σ′
0
σ =

σ0σ
′ − σ′

0σ

σmσ′′
m

+
σ′

0σ
′

σmσ′′
m

Fx, (12)

∂σ0σ
′ =

1
σ′

0

(
σ′′ − σ′′

0 ∂σ′
0
σ′) , (13)

∂σ′
0
σ′ =

σ0σ
′′

σmσ′′
m

− σ′
0(σσ′′− σmσ′′

m)
σ′′

mσmσ′ +
σ′

0σ
′′

σmσ′′
m

Fx. (14)

The last two expressions can be obtained by differentiating
the first two expressions with respect to s. Clearly, these
derivatives have the initial values ∂σ0σ(0) = ∂σ′

0
σ′(0) = 1

and ∂σ′
0
σ(0) = ∂σ0σ

′(0) = 0. In the special case κ = 0
and ε = 0, these expressions reduce to the simple results
of Eqs. (16) and (18) in [2], and Fx = s. It is impor-
tant to note that, for a space-charge dominated beam where
the emittance term can be neglected, all these expressions
are independent of slice perveance, with or without exter-
nal focusing. This property may play a significant role in
emittance compensation of high-brightness photoinjectors.
However, for a magnetized beam, these expressions will
depend on the perveance of the (reference) slice.

To evaluate the effect of small perveance variations, we
compute ∂κsσ and ∂κsσ

′ similarly. Differentiating Eqs. (3)
and (4) yield, respectively,

∂κsσ
′ =

1
σ′

(
ln

σ

σ0
+ σ′′∂κsσ

)
, (15)

∂κsσm =
1
σ′′

m

ln
σ0

σm
. (16)

Differentiating Eq. (6) with the help of function Fx and the
above expression for ∂κsσm gives

∂κsσ =
σ′

σmσ′′
m

(
σ

σ′ −
σ0

σ′
0

− Fx

)
ln

σ0

σm
+

σ′

2
Fs, (17)

where the function Fs is defined the same as Fx except that
κs = 1 and ε = 0 are set in the numerators. (Thus, for
a space-charge dominated beam, Fx = κsFs.) The initial
values of both ∂κsσ and ∂κsσ

′ are zero.

EMITTANCE OSCILLATION

From the envelope expressions in Eq. (7), assuming the
various deviations from the reference envelope are uncor-
related, the emittance due to slice envelope variations can
be calculated as [2]

εenv �
√∑

α

W 2
qα

(
(δqα)2

/
qα2

)
, (18)
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where
Wqα ≡ (σ̄∂qα σ̄′−σ̄′∂qα σ̄) qα. (19)

Here, the bar over δqα and qα indicates averaging over the
slices.

Inserting the above partial derivatives into Eq. (19), we
have

Wσ = σ̄0

[
σ̄σ̄′′ − σ̄′2

σ̄′
0

(
1 − σ̄′′

0

σ̄′ ∂σ′
0
σ̄

)
− σ̄σ̄′′

0

σ̄′

]
, (20)

Wσ′ = σ̄′
0

[
σ̄σ̄′′ − σ̄′2

σ̄′ ∂σ′
0
σ̄ +

σ̄σ̄′
0

σ̄′

]
. (21)

These expressions reduce to the special results of Eqs. (17)
and (19) in [2]. Since ∂σ′

0
σ̄ equals zero at the beginning,

we have the initial values

Wσ(0) = −Wσ′(0) = −σ̄0σ̄
′
0. (22)

To examine the extreme values of Wσ(s) and Wσ′ (s), we
take the s-derivative of these functions and have, after some
algebra,

W ′
σ = σ̄0

σ̄σ̄′′′ − σ̄′σ̄′′

σ̄′
0σ̄

′
(
σ̄′ − σ̄′′

0 ∂σ′
0
σ̄
)
, (23)

W ′
σ′ = σ̄′

0

σ̄σ̄′′′ − σ̄′σ̄′′

σ̄′ ∂σ′
0
σ̄. (24)

It is easy to see that the factor

σ̄σ̄′′′ − σ̄′σ̄′′

σ′ = −2
[
κs

σ
+ 2

ε2

σ3

]
�= 0,

thus Wσ reaches the extreme value of −σ̄0σ̄
′′
0 σ̄/σ̄′ when

σ̄′ = σ̄′′
0 ∂σ′

0
σ̄, and Wσ′ reaches the extreme value of

σ̄′
0
2σ̄/σ̄′ when ∂σ′

0
σ̄ = 0. Using Eq. (12) and the con-

dition for the extreme, we can further express the extreme
values Wm

σ as

Wm
σ = −σ̄0σ̄

′′
0

σ̄

σ̄′ =
σ̄0

σ̄′
0

(σ̄mσ̄′′
m − σ̄0σ̄

′′
0 ) − σ̄0σ̄

′′
0 Fx, (25)

Wm
σ′ = σ̄′

0
2 σ̄

σ̄′ = σ̄0σ̄
′
0 + σ̄′

0
2Fx (26)

where Fx integrates up to the extreme point. However, it
is not obvious that the condition for the extremes can be
satisfied (except the trivial case W ′

σ′ = ∂σ′
0
σ̄ = 0 at the

beginning).
From these expressions, a few general properties can be

drawn about emittance oscillation. In particular, for a beam
focused into a drift, σ̄ ′

0 < 0, σ̄′′
0 > 0, σ̄mσ̄′′

m − σ̄0σ̄
′′
0 > 0,

thus Wσ(0) > 0 and W m
σ < 0, which leads to emittance

minimum when Wσ crosses zero, as discussed in [2]. Fur-
thermore, W m

σ < 0 requires σ̄′ > 0 at that location, thus
the emittance maximum due to Wσ is always located after
the beam waist where σ̄′ = 0.

Similarly, Wκs can be worked out as

Wκs = κ̄s

[
σ̄

σ̄′ ln
σ̄

σ̄0
+

σ̄σ̄′′ − σ̄′2

σ̄′ ∂κs σ̄

]
, (27)

where ∂κs σ̄ is given by Eq. (17). Clearly, Wκs(0) = 0.

EFFECTS OF BEAM ANGULAR
MOMENTUM

To see the influence of beam angular momentum on the
beam envelope spreading of an individual slice and on the
emittance oscillation of a bunch of slices, we plot a set of
five figures showing the quantities σ, σ ′, Wσ , Wσ′ , and
Wκs , using the expressions given above. In each figure,
the red curve shows the evolution of a space-charge dom-
inated beam and the blue curve shows the same beam but
with an angular momentum term 10 times larger than the
space-charge term at the beam waist (2 mm). The other
parameters are σ0 = 9 mm, σ′ = −9.5 mrad, βγ = 12,
κs = 0.05, which are adopted from an optimized SPARC
photoinjector design.

Through this example and the above analysis, we see
that, qualitatively speaking, the basic behavior of beam
spreading and emittance oscillation in drift space are not
changed by the large angular momentum, although there
are significant quantitative changes. For example, the beam
waist becomes much larger and is reached much quicker.
Also, the emittance oscillation amplitude gets larger, and
so on. From this point of view, Wκs may be an excep-
tion because there is no zero crossing anymore for the blue
curve.

However, emittance compensation for magnetized beam
[5] may be significantly different from conventional space-
charge dominated beam. For example, there is no in-
variant envelope solution for the envelope equation in a
booster when there is a significant emittance term. Thus,
the matching condition for space-charge dominated beam
may not be appropriate any more. Furthermore, the abil-
ity to compensate emittance may be limited by the fact that
beam perveance cannot be scaled away from the envelope
equation of a magnetized beam.

CONCLUDING REMARK

We developed a technique to examine the beam spread-
ing and emittance oscillation of a magnetized beam in free
space. Clearly, the technique also applies to a beam with
significant thermal emittance and/or in a uniform focusing
channel (we have kept both focusing κ and emittance ε
in all the expressions). In a focusing channel, a beam
may reach both minimum and maximum size because it
is bounded by a potential well. For example, a diverg-
ing beam reaches a maximum beam size in the focusing
solenoid for emittance compensation. The emittance evo-
lution in the solenoid can be described by the same expres-
sions presented above. Much more work is needed to un-
derstand emittance compensation of a magnetized beam.
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Figure 1: Reduced envelope in free space for space-
charge dominated beam (red) and beam with large emit-
tance (blue).
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Figure 2: Reduced envelope slope in free space for space-
charge dominated beam (red) and beam with large emit-
tance (blue).
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Figure 3: Emittance oscillation in free space due to ini-
tial slice envelope variation for space-charge dominated
beam (red) and beam with large emittance (blue). The solid
curves plot the absolute values.
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Figure 4: Emittance oscillation in free space due to ini-
tial slice slope variation for space-charge dominated beam
(red) and beam with large emittance (blue). The solid
curves plot the absolute values.
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Figure 5: Emittance oscillation in free space due to slice
perveance variation for space-charge dominated beam (red)
and beam with large emittance (blue). The solid curves plot
the absolute values.
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