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Abstract

Maintaining a stable bunch length and peak current is a
critical step for the reliable operation of a SASE based x-
ray source. In the LCLS, relative bunch length monitors
(BLM) right after both bunch compressors are proposed
based on the coherent radiation generated by the short elec-
tron bunch. Due to its diagnostic setup, the standard far
field synchrotron radiation formula and well-developed nu-
merical codes do not apply for the analysis of the BLM
performance. In this paper, we develop a calculation pro-
cedure to take into account the near field effect, the effect
of a short bending magnet, and the diffraction effect of the
radiation transport optics. We find the frequency response
of the BLM after the first LCLS bunch compressor and dis-
cuss its expected performance.

INTRODUCTION

Maintaining a stable bunch length and peak current is a
critical step for the reliable operation of a SASE based x-
ray source. In the LCLS, relative bunch length monitors
(BLM) right after both bunch compressors are proposed
based on the coherent radiation generated by the short elec-
tron bunch [1]. A similar diagnostic device is used in the
operation of the DESY VUV-FEL (FLASH) [2].

In the previous calculations of the beam radiation [1]
standard formulae for the synchrotron radiation in the far
field were used. However, due to the close proximity of the
reflecting mirror to the magnet, applicability of these for-
mulae is not fully justifiable. An additional factor which
complicates the radiation pattern is the short length of the
magnet comparable to the formation length of the radiation
with the wavelength of the order of the bunch length. To
the authors’ knowledge, the available computer codes for
calculation of the beam radiation (e.g., the Synchrotron Ra-
diation Workshop [3]) cannot be used for our case because
the beam passes through the hole in the mirror.

It is a goal of this paper to calculate the electromagnetic
field of an electron bunch which takes into account the near
field effect, the effect of a short bending magnet, and the
diffraction of the radiation caused by reflection from the
mirror. We find the energy spectrum intercepted by the
mirror in the first LCLS bunch compressor (BC1). We
carry out these calculation assuming radiation in free space
and neglecting the effect on the radiation of the conducting
walls of the vacuum chamber.

We use Gaussian units throughout this paper.

FORMULATION OF THE PROBLEM

A simplified layout of the problem is presented in Fig.
1. The beam passes through a short magnet (e.g., the last
dipole of the first LCLS bunch compressor or BC1) of
length lm with the bending radius ρ and propagates along
a straight line. A reflective mirror of diameter D with a
circular hole of diameter d is located at a distance L from
the exit edge of the magnet. The mirror is tilted at 45◦ and
sends the beam field to the detector at the right angle to the
beam trajectory. To simplify the calculation we, however,
assume that the mirror’s plane is perpendicular to the beam
orbit (that is, it reflects the radiation back toward the mag-
net) and calculate the fields incident on as well as reflected
from the mirror. Such modification of the geometry does
not loose any significant physical effects of the problem.
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Figure 1: Layout of the bunch length monitor. The coor-
dinate z is measured in the direction of beam propagation
after the magnet with z = 0 at the exit edge of the mag-
net. The coordinate x is in the plane of the orbit, and the
coordinate y is perpendicular to the plane.

We carried out calculations in the frequency domain. To
calculate the Fourier component at frequency ω of the beam
field on the surface of the mirror we used two approaches.
In the first one, a standard expression for the electromag-
netic field of an electron moving in free space was used
(see, e.g., [4])

E(r, ω) =
e

γ2

∫ ∞

−∞
dt

n − β

R2(1 − n · β)2
eiω(t+R/c)

+
e

c

∫ ∞

−∞
dt

n × [(n − β) × β̇]
R(1 − n · β)2

eiω(t+R/c) .

(1)

Here R, n, β and β̇ are functions of time t: R is the vec-
tor connecting the current position of the electron with the
observation point r, with R = |R|, n is the unit vector di-
rected along R, β and β̇ are the velocity and acceleration
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normalized by the speed of light, and γ = (1 − β 2)−1/2.
The first term in Eq. (1) is usually referred to as the veloc-
ity field. Note that for a relativistic particle with γ � 1 the
integrands in Eq. (1) have sharp narrow peaks in the direc-
tion for which n is parallel to β because in this direction
the denominators (1−n ·β)2 ∼ 1/4γ4 become extremely
small.

We remind the reader that the usual approximation for
the far zone (FZ) is to neglect the velocity field and to take
the limit R → ∞:

EFZ(r, ω) ≈ e

cR

∫ ∞

−∞
dt

n × [(n − β) × β̇]
(1 − n · β)2

eiω(t+R/c) .

In this expression, the value of R in front of the integral
and the vector n are considered as constant but R in the
exponential (and of course β and β̇) are functions of time.
If one integrates this expression over a finite time interval
from t1 to t2 the result is

EFZ(r, ω) = − ieω

cR

∫ t2

t1

dt n × (n × β)eiω(t+R/c)

+
e

cR

n × (n × β)
1 − n · β eiω(t+R/c)

∣∣∣∣
t2

− e

cR

n × (n × β)
1 − n · β eiω(t+R/c)

∣∣∣∣
t1

.

The last two terms are responsible for the edge radiation in
the far zone [5].

We found advantageous for numerical calculations to use
another expression for the electromagnetic field of a mov-
ing point charge [6]:

E(r, ω) =
ieω

c

∫ ∞

−∞

dt

R
[β − n (1 + ic/ωR)] eiω(t+R/c) .

(2)

This is the underlying equation used in the Synchrotron Ra-
diation Workshop code [3]. Although this equation looks
very different from Eq. (1), they give the same result for
E(r, ω). The derivation of Eq. (2) using Lienard-Wiechert
potentials can be found in Ref. [7]. In passing, we note
that neglecting the velocity field in Eq. (1) is not justified
in our situations and yields very different numerical results
as compared to Eq. (2).

To integrate Eq. (2) over the particle’s orbit we split the
integration path into three pieces. The first one is a straight
line before the entrance to the magnet, the second one is
an arc of a circular orbit inside the magnet, and the third
one comprises the part of the trajectory after the exit from
the magnet. The first two integrals were computed numeri-
cally using the Mathematica built in integration routine [8]
(in the first integral the lower limit of integration −∞ was
replaced by a large negative number). A direct numerical
integration of the third integral turns out be slow and poorly
convergent because of a fast variation of the phase in the
integrand. To improve the speed of calculation we used a
method described in Ref. [7], which is valid in the limit
of large values of γ. Although formally the integration in

Eq. (2) is extended beyond the position of the mirror, the
dominant contribution to the integral comes from the part
of the trajectory located in front of the mirror.

RESULTS OF THE CALCULATIONS

The quantity c|E(r, ω)|2/8π can be considered as an en-
ergy flow of the electromagnetic field. We calculated this
quantity at the location of the mirror for various frequencies
ω and integrated it over the mirror surface. The resulting
quantity is a measure of the energy reflected by the mirror
in a unit interval of frequencies.

To illustrate the distribution of the spectral energy in the
plane of the mirror, we plot in Fig. 2 the quantity |E|2 (in
arbitrary units) in the mirror plane at the distance L = 22
cm for ω/c = 50 cm−1. We also assume that the γ factor
for the beam is equal to 500, the bending radius of the mag-
net is 2.5 m, and the magnet length lm = 22 cm. The plot

Figure 2: Square of the electric |E|2 (in arbitrary units)
in the observation plane x, y. The picture is symmetric
with respect to the axis x. The color coding goes from red
through yellow, green, and blue as the intensity increases.

is truncated at small distances close to the trajectory of the
beam after the magnet (x = y = 0) because the field has
a singularity at the trajectory. Since the reflecting mirror
has a hole for the passage of the beam, the field from this
region is not reflected by the mirror.

Fig. 3 shows the same field as in Fig. 2 projected onto the
surface of the mirror. The mirror outer diameter D = 7.6
cm, and the diameter of the hole is d = 1.5 cm. Note a
complicated pattern of the field on the surface of the mirror.

We calculated the spectral energy S(k) intercepted by
the mirror as a function of the wavenumber k = ω/c,
S(k) ∝ ∫

mirror
|E(r, k/c)|2d2r. It is normalized in such a

way that the total energy reflected by the mirror due to the
passage of a bunch with the longitudinal charge distribution
λ(z) (

∫
λ(z)dz = 1) is given by

E =
∫ ∞

0

dkS(k)F (k) , (3)

where F (k) is the form factor related to the shape of the
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Figure 3: Distribution of the quantity |E|2 on the surface of
a round mirror. Shown is a hole at the center of the mirror
for the beam passage.

electron bunch,

F (k) =
∣∣∣∣
∫ ∞

−∞
λ(z)eikzdz

∣∣∣∣
2

. (4)

The plot of the function S(k) for the geometry of the mirror
shown above is shown in Fig. 4.
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Figure 4: The spectral energy of the beam field intercepted
by the mirror as a function of wavenumber k = ω/c. The
dots show the calculated values of S.

Using the calculated spectrum we computed the amount
of energy intercepted by the mirror for various values of
the bunch lengths, taking a parabolic bunch profile that is
expected after BC1 [1]. This energy as a function of the
compressed rms bunch length is shown in Fig. 5.
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Figure 5: The reflected energy as a function of the com-
pressed rms bunch length.

FIELD REFLECTED FROM THE MIRROR

To calculate the field reflected from the mirror, we use
the vectorial diffraction theory as the wavelengths of in-
terests (comparable to the bunch length) are much smaller
than the size of the mirror [4]. The detector is assumed to
be located far away from the mirror. Although there may
be additional optical elements between the mirror and the
detector, we neglect them here in order to illustrate the cal-
culation method. According to the diffraction theory, the
detected field is given by

Er =
ieikR1

2πR1
k ×

∫
mirror

(n1 × Es)e−ik·rd2r , (5)

where R1 is the distance between the detector and the mir-
ror, Es is the induced field at the mirror, and n1 is the
unit vector perpendicular to the mirror surface dS. The in-
duced field is defined as follows. The total electric field on
the surface of the mirror is the sum of the beam field E
(calculated in the previous section) and the induced field
Es. Due to the boundary condition on the metal sur-
face, the tangential component of this sum should vanish,
n1 × (Es + E)mirrror = 0, which gives

(n1 × Es)mirrror = −(n1 × E)mirrror . (6)

We will make the small angle approximation around the
field propagation direction (for the mirror perpendicular to
the beam orbit, the reflected field propagates in the direc-
tion opposite to the z axis). Using the cylindrical coordi-
nate system r and φ in the mirror plane, we find the re-
flected field at the point with coordinates x and y in the
detector plane as follows:

Er(x, y) =
ikeikR1

2πR1

∫ D/2

d/2

rdr

∫ 2π

0

dφEtang

× exp
[
−i

kr

R1
(x cosφ + y sinφ)

]
, (7)
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where the superscript “tang” indicates the component of
the electric field tangent to the surface. Given the beam
field E on the mirror as found in the previous section, we
integrated Eq. (7) numerically to compute the detected sig-
nal. As a numerical example, Fig. 6 shows the reflected
field intensity distribution at the distance R1 = 81 cm from
the mirror for ω/c = k = 50 cm−1. Note that the maxi-
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Figure 6: Square of the electric |E|2 (in arbitrary units) in
the detector plane x, y located 81 cm away from the mirror.
The plot is symmetric with respect to the x axis.

mum of the field in the detector plane is shifted along the
x coordinate. Equation (7) can be generalized to include a
paraboloid mirror that focuses the radiation.

CONCLUSION

We calculated the electromagnetic field intercepted and
reflected by a metallic mirror for the geometry of the LCLS
bunch length monitor. Unlike the previous calculations, we
do not assume the far zone approximation for the radiation
field. Our calculation takes into account the near field ef-
fect, the short length of the bending magnet (the so called
“edge radiation” effect), and the diffraction of the radiation
caused by reflection from the mirror.

Our calculations assume propagation of the beam in free
space and neglect the effect on the radiation of the conduct-
ing walls of the vacuum chamber. In reality, those effects
are not negligible, and our result should be considered as
an approximation to the real spectrum.
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