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Abstract
The effect of a modifying ac axial magnetic field 

perturbation on single mode operation of a circular FEL is 

presented. The mode transition and the effect of 

perturbation field are investigated. The mode transition in 

the very short interval of each shot can be important in 

time-averaged mode superposition and also in production 

of pulse modes. In the present work we consider the 

subject of mode transition by adding an ac axial magnetic 

field perturbation to the axial dc guide field and 

investigate the radiation modes and allowed transitions as 

a function of perturbation frequency 

 

INTRODU TION 

    Many experimental and theoretical studies have been 

carried out on conventional linear geometry Free Electron 

Lasers [1.2]. These devices have gain limitations due to 

the finite length of the interaction region. The circular 

geometry free electron laser has in principal infinite 

interaction length, thus the gain of these devices does not 

saturate. There are, however; some issues in regard to 

operation of circular FEL, which have not been 

addressed. First, high quality single mode operation of 

these lasers has not been represented in literature. 

Secondly, it is rather difficult to incorporate circular 

FEL's as compared with conventional linear form with 

high power accelerators. In a circular FEL magnetic field 

configuration consists of a uniform axial field zaB
)

0 and 

an azimuthally periodic wiggler field. In this article an 

oscillating axial magnetic field 
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is added to the 

axial guide field. The mode transition of circular FEL is 

investigated through the effect of the modifying magnetic 

field and the induced perturbing electric field. Our study 

shows that the application of the ac magnetic field leads 

to the operation of the circular FEL in transitional TM 

mode. The induced electric field affects the cyclotron 

mode and changes its frequency. This results in mode 

transition in transverse magnetic (TM) modes. 
 
 

C

AL MODEL 

    In our analysis, an annular electron beam of small 

thickness is considered which rotates within the space 

between the inner and the outer conductors of a coaxial 

metallic waveguide (see Fig. 1). The modifying axial ac 

magnetic field is superimposed on the axial guide field 

and an azimuthally periodic wiggler field which perturbs 

the electron beam. The time dependent magnetic field, 

present inside the waveguide consists of two parts, one 

being the magnetic field of the electromagnetic wave 

generated by the laser action ),(2 trB
r

r

, and the other part 

1
is the modifying ac field zatB

)

)sin()( 01 ωρ : 

),()sin()(),( 201 trBatBtrB
r

r

)r
r

+= ωρ                     (1) 

Using the Maxwell's equations, the resulting wave 

equations for the magnetic field and the induced electric 

field are: 
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The wave equation for the magnetic field, Eq. (2) can be 

broken up into logitudinal and transverse parts, then 
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The above equations reveal that the purturbing axial 

magnetic field only couples to TE waveguide modes. 

Assuming the resonance of a TE mode at frequency 0ω  

with the ac purturbing field, the solution of the wave 

equations can be written as: 
 

 
Figure 1: Layout of circular FEL 

                                                 
1
Mrj59@phymail.ut.ac.ir 

2
agamir@khayam.ut.ac.ir 

.

.

THEORET CI

Proceedings of FEL 2006, BESSY, Berlin, Germany TUPPH017

FEL Oscillators and Long Wavelength FELs 1



z

ti
ae

c
Nb

c
JatrB

)r
r

0)]()([),( 0

00

0

00

ωρ
ω

ρ
ω −+=    (6) 

ϕ
ωρ

ω
ρ

ω
ae

c
Nb

c
Jaic

trE

ti )

r
r

0)]()([

),(

0
10

0
10

−+

=

   (7) 

Typical radial profiles of the above magnetic and electric 

fields across the waveguide cross section are shown in 

Fig. 2. 

 

 
 

 

 
 

Figure2: The induced magnetic field (top) and the 

induced electric field (bottom)  radial profiles across the 

waveguide cross section. Here GHz297.60 =ω , b= 

0.07m, and a=0.055m. 

 

0a  and 0b  are determined by the application of the 

boundry conditions. 

 

D SPERSION RELATION 

     The motion of an electron in the induced 

electromagnetic fields can be described through the 

Lorentz force equation: 
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Writing the perturbed quantities ,,, Ev
��

γ  and tB
r

 in the 

following form [3]: 
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and considering only TM waves, the force balance 

equation becomes: 
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It should be noted that we have considered only the TM 

modes where 0=zBδ , 0, =ϕρδE
r

. In order to obtain 

the dispersion properties, the spatial parts of the perturbed 

quantitie are separated as follows [4]. 
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Substituting in Eq.(11) yields: 
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Where ])([)(
dt

d
tit

ω
ω +=Ω . 

For TMpq  modes with axial symmetry, through the use of 

the Maxwell’s equations we would then have           
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Setting  p=0, the equations reduce to 
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Now integrating over the raduis of the waveguide the last 

equation becomes: 
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Where r1 and r2 are the inner and outer radius of electron 

ring, respectively. The first term on the right hand side 

can be neglected if the electron beam is considered 

tenuous: 
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Where r0 is the mean radius of electron ring. One more 

equation is needed to set up the dispersion relation. The 

time variation of the energy balance equation can be 

expressed as: 
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Substituting for ,, Ev
r

r

 and B
r

the axial component of v
�

δ  

as a function of E
r

δ  can be obtained as 
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From equations 13, 17, and 19 the time dependent 

differential dispersion equation is obtained ( see Eq. 20).  

This determinan will give quadratic equation in terms of 

dt

d
tt

ω
ω +)(  so it will have tow solutions. Every solution 

is a differential equation that in turn should be solved for 

).(tω  Real and imaginary parts of the obtaind frequency 

can give the oscillation frequency and lifetime of each 

exited TM mode. Both of these are oscillatory by 

frequency of applied perturbation field. By plotting 

imaginary part of abtained frequency it can be found that 

evry oscillation that have a positive imaginary part 

couldn' t been amplified and would disappear. 

 

0

0

])([

)()(
1

])([0

)(
)(

)]))(()[(
)(

()(
)(

(

00

000

2

0

00

0

0

0

00

3

0

00

00

3

0

=

+

−

+

−+−−+

tzv
dt

d
ttm

tSinrE

c
dt

d
tt

tSin
mB

rEe

m

e

dt

d
ttitCos

mc

rEe
ttSin

mc

rEe

ω
ωγ

ωε

ω
ω

ω
δ

ω
ωω

ω

βγ
γω

βγ ϕϕ �� ������
(20) 

REFERENCES 

 

[1]T. Mizuno, T. Otsuki, Phys. Rev. Lett. 77,2686, 

(1996). 

[2] Ronald C. Davidson, Wayane A. Mcmullin, , Phys.  

 

 

 

 

Fluids, 27 (1), 233, (1984). 

[3] H. Saito, J. S. Wurtele,  Phys. Fluids, 30 (7), 2209, 

(1987). 
[4]Yasushi Kawai, Hirobumi Saito, Phys. Fluids, 3 (6), 

1485, (1991).  

Proceedings of FEL 2006, BESSY, Berlin, Germany TUPPH017

FEL Oscillators and Long Wavelength FELs 3


