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Abstract

The effect of a modifying ac axial magnetic field
perturbation on single mode operation of a circular FEL is
presented. The mode transition and the effect of
perturbation field are investigated. The mode transition in
the very short interval of each shot can be important in
time-averaged mode superposition and also in production
of pulse modes. In the present work we consider the
subject of mode transition by adding an ac axial magnetic
field perturbation to the axial dc guide field and
investigate the radiation modes and allowed transitions as
a function of perturbation frequency

INTRODUCTION

Many experimental and theoretical studies have been
carried out on conventional linear geometry Free Electron
Lasers [1.2]. These devices have gain limitations due to
the finite length of the interaction region. The circular
geometry free electron laser has in principal infinite
interaction length, thus the gain of these devices does not
saturate. There are, however; some issues in regard to
operation of circular FEL, which have not been
addressed. First, high quality single mode operation of
these lasers has not been represented in literature.
Secondly, it is rather difficult to incorporate circular
FEL's as compared with conventional linear form with
high power accelerators. In a circular FEL magnetic field

configuration consists of a uniform axial field Boﬁz and

an azimuthally periodic wiggler field. In this article an
oscillating axial magnetic field

B, (p)Sin(wyt)a, (B,(p) << B,)is added to the

axial guide field. The mode transition of circular FEL is
investigated through the effect of the modifying magnetic
field and the induced perturbing electric field. Our study
shows that the application of the ac magnetic field leads
to the operation of the circular FEL in transitional TM
mode. The induced electric field affects the cyclotron
mode and changes its frequency. This results in mode
transition in transverse magnetic (TM) modes.

THEORETICAL MODEL

In our analysis, an annular electron beam of small
thickness is considered which rotates within the space
between the inner and the outer conductors of a coaxial
metallic waveguide (see Fig. 1). The modifying axial ac
magnetic field is superimposed on the axial guide field
and an azimuthally periodic wiggler field which perturbs
the electron beam. The time dependent magnetic field,
present inside the waveguide consists of two parts, one
being the magnetic field of the electromagnetic wave
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generated by the laser action B ,(7,t), and the other part
'is the modifying ac field B, (0) sin(@,t)a. :

B(7,1) = B,(p)sin(@,t)a + B, (V1) (1)
Using the Maxwell's equations, the resulting wave

equations for the magnetic field and the induced electric
field are:
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The wave equation for the magnetic field, Eq. (2) can be
broken up into logitudinal and transverse parts, then
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The above equations reveal that the purturbing axial
magnetic field only couples to TE waveguide modes.

Assuming the resonance of a TE mode at frequency @),

with the ac purturbing field, the solution of the wave
equations can be written as:
Rotating electron beam

Permancnt magnets

Scm
Figure 1: Layout of circular FEL.
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Typical radial profiles of the above magnetic and electric
fields across the waveguide cross section are shown in
Fig. 2.
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Figure2: The induced magnetic field (top) and the
induced electric field (bottom) radial profiles across the

waveguide cross section. Here @), = 6.297 GHz , b=
0.07m, and a=0.055m.
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a, and b, are determined by the application of the

boundry conditions.

DISPERSION RELATION
The motion of an electron in the induced
electromagnetic fields can be described through the
Lorentz force equation:

dﬁz—i(Eﬂ?xE) (8)
m

dt
Writing the perturbed quantities V , ¥ ,E , and E, in the

following form [3]:
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and considering only TM waves, the force balance
equation becomes:
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It should be noted that we have considered only the TM
modes where éBZ =0, bEp’q, =0. In order to obtain

the dispersion properties, the spatial parts of the perturbed
quantitie are separated as follows [4].

F (7,0 =F(pre”

Substituting in Eq.(11) yields:

(12)

FEL Oscillators and Long Wavelength FELs



Proceedings of FEL 2006, BESSY, Berlin, Germany TUPPHO17

6}/3ﬁ E(?) r2 a r2
5. (M Sin(ay)) + j$ p3B,dp = y [pdl dp
rl rl
(16)
er B i do.'?
(ol — MCOS((OOI))QU)&/Z = +—laxt)+1=] [poE.dp
, (13) c dr 7
‘ E( r ‘ Where r; and r, are the inner and outer radius of electron
(éE éB —— L Cos(ayt) ring, respectively. The first term on the right hand side
ma, 0 can be neglected if the electron beam is considered
- tenuous:
- B, Bo in(@yt)) [a)(t)+tz]éEz(r0) =-0B,(r,)c a7

) da Where r; is the mean radius of electron ring. One more
Where Q(1) = i[aw(t) +—]. equation is needed to set up the dispersion relation. The
dt time variation of the energy balance equation can be

For TM,,q modes with axial symmetry, through the use of expressed as:

the Maxwell’s equations we would then have
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) dw Substituting for ?,E, and E the axial component of N
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i dw From equations 13, 17, and 19 the time dependent
yINe o T lo) +t —OE o differential dispersion equation is obtained ( see Eq. 20).
¢ dt This determinan will give quadratic equation in terms of
Setting p=0, the equations reduce to
B =0 a(t)+ tc;—w so it will have tow solutions. Every solution
t
0 ) do is a differential equation that in turn should be solved for
a_éEz =ilat) +1 E]équ (I5)  @(t). Real and imaginary parts of the obtaind frequency
3 can give the oscillation frequency and lifetime of each
1 exited TM mode. Both of these are oscillatory by
D dp P éB = dl ., + [w(t) + t_]éE frequency of applied perturbation field. By plotting

imaginary part of abtained frequency it can be found that
evry oscillation that have a positive imaginary part
couldn' t been amplified and would disappear.

Now integrating over the raduis of the Wavegulde the last
equation becomes:
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