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Abstract
The influence of waveguide dispersion on the FEL 

operation driven by short electron bunches is studied. 
Under the assumption of a high quality resonator, a 
parabolic equation for the evolution of the profile of 
electromagnetic pulse is derived. The condition of self-
excitation are found by means of an analytical theory 
describing a structure of supermodes as the sum of 
resonator eigenmodes with locked phases. It is 
demonstrated that due to waveguide dispersion FEL is 
able to generate not only for positive but also for negative 
cavity detuning. The transient and nonlinear stages of the 
free-electron laser operation are analyzed by the computer 
simulation, and the optimal mismatches of group and 
cavity synchronism conditions are found. 

INTRODUCTION
The mode-locking regime is typical for free-electron 

lasers (FEL) driven by a train of short electron bunches. 
In this regime, the electromagnetic radiation consists of 
micropulses with a duration nearly equal to that of the 
electron bunches. Both pulses (electron and 
electromagnetic) travel together through the resonator, but 
shift slightly away from each other due the difference 
between the wave group velocity and the electron 
velocity. Once they reach the right-hand mirror, the 
electron pulse escapes from the resonator, while the 
electromagnetic pulse reflects and comes back to the left-
hand mirror at the time when the next current pulse 
arrives.  

In short wavelength (optical, infrared) FEL experiments 
[1-4], the group velocity of electromagnetic pulses 
exceeds the velocity of electron bunches. To provide 
generation under such conditions, a specific mismatch 
between a period of electromagnetic pulse round trip over 
a resonator and a period of bunch injection was used. 
However, in some experimental investigations of long 
wavelength FELs [5-8], a waveguide may be used, so that 
the specific waveguide dispersion allows one to realize 
“zero-slippage” condition, for which the group velocity of 
electromagnetic pulse is equal to the longitudinal velocity 
of electrons. Under such conditions, mutual 
synchronization of radiation from different parts of 
electron bunches occurs due to dispersive spreading of the 
electromagnetic field, whereas localization of radiation 
near electron bunches is caused by its guiding properties 
[9,10]. 

In the present paper, a theoretical model of waveguide 
FEL is developed which takes into account the waveguide 
dispersion. Under the assumption of a high quality 
resonator, a parabolic equation for the evolution of the 
profile of electromagnetic pulse is derived. The linear, 
transient and nonlinear stages of the FEL operation are 
investigated, both analytically and numerically, and the 

optimal conditions are found. 

THE MODEL AND BASIC EQUATIONS 
Let us suggest that the radiation pulse propagating 

through a waveguide circulates between two mirrors (with 
reflection coefficients ), which are placed at some 
distance, . Let FEL be fed by short electron pulses of 
duration , which is essentially less than both the 
round-trip of the radiation in the cavity ,
and the repetition period of an electron bunch injection, 

. During n-the pass through a resonator, the field can 
be represented as  
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where Es  is a function, describing the profile of a given 
transverse waveguide eigenmode,  is the reference 
frequency, and  the longitudinal wave 
number. Resonant electron-wave interaction takes place 
under the synchronism condition, 
where  is the bounce frequency, 

 the undulator period. We will 
consider the excitation of a resonator by a train of short 
electron bunches under the following conditions: 
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the reflection coefficients are close to unity, 
 and the changes of the wave amplitude 

during one pass are very small; 
1,2 1R

dispersion spreading of the electromagnetic 
pulse during one pass over the resonator is small as 
well.

Under these approximations, we can replace the 
discrete variable n  (pass number through the resonator) 
by a slow time  with the period of one round trip, 
taken as a time unit. Evolution of the pulse profile along 
the resonator can be described by the parabolic equation 
(for details see [9]):  
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where 
2

0
0

1 iI e d  is the synchronous harmonic 

of the beam current,  the wave group 

velocity, |

/grV h
2h2ˆ | /  the wave dispersion parameter, 
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0 / (1grQ l V R R1 2 )  the resonator Q-factor,  the 

peak current of electron bunch, 

0I

21/ 1  the 
relativistic Lorentz factor,  the norm of the operating 
mode,  the electron-wave coupling coefficient, 

sn
( )f y  a 

function, describing the electron pulse profile, 
/( )n eeA m c  the dimensionless wave amplitude. 

Taking into account the cavity detuning 
, we use an independent time variable, ˆ ( ) /i RT T TR

ˆ ˆ/ gry t z V .
Under assumptions described above, we can relay upon 

the periodical boundary conditions: 
                        (2)ˆ ˆ( , ) ( , )Ry y T

and expand the field and the beam current into Fourier 
series:
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An amplitude of each harmonic , can be treated as 
an amplitude of cavity eigenmode with the longitudinal 
index .

ma

m
Assuming a small variation of electron energy 

2E m ce  and neglecting the Coulomb interaction, the 
electron motion equation can be presented in the form  
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with the boundary conditions: 
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where  is the initial mismatch of 

synchronism at the reference frequency, 

0 0( h V V) /
2  the 

inertial bunching parameter. With the use of normalized 
variables,  
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equations (1), (4) can be transformed to the following 
form:  
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is the normalized interaction length, F
the function describing electron-pulse profile, 

1 1
gr  is the relative value of the detuning of 

“zero-slippage” condition. The normalized energy stored 
in electromagnetic pulse is give by relation  
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THE LINEAR THEORY 
Linearizing the equation of electron motion (see Eq. 

5b), we obtain an equation for the electron current: 
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Using the expressions (3) we find all harmonics of current  

          2 2 ,

2 / .

ik ikm m

m m
m m m

m

i e ie
J a

k k k

k m T

                (7) 

As a result for the amplitude of each mode  from (5a) 
taken into account (7) we obtain 
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Obviously the diagonal elements of the matrix 
coincide with the expression for a complex electron 
permittivity found in [9, 10]. 

m
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Representing the solution of Eq. 8 in the form 

ˆm m
ia e a  where  is a complex frequency, we get 

the algebraic equations for the supermodes of the 
resonator excited by a train of electron bunches: 

                                                        (9) ˆ ,m
m n

n
i a D ân
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Assumed for simplicity that the electron pulse has the 

21 (2 / ) (2 / )m m
n nD C i m T i m T

Proceedings of FEL 2006, BESSY, Berlin, Germany TUPPH026

FEL Oscillators and Long Wavelength FELs 379



rectangular form with normalized duration 

0 /c cT P , we obtain the following expression for 

the elements of the matrix :mnD
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The starting condition of generation corresponds to the 
equality

                                                               (10) Im[ ] 0.
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Figure 1: Normalized profile (a) and spectrum (b) of the 
supermode for the dimensionless parameters: 4cT ,

1, , 2.3L .3 . Resonator eigenmodes 
amplitudes are shown by blue dotes. 

A spatial structure of supermodes calculated via eigen 
vectors of the matrix  is shown in Fig. 1a; it is a 
superposition of longitudinal resonator eigenmodes. 

m
nD

0 2 4
0

2

4

Lst

Tc
-2 0 2

0

5

2

1

Lsta) b)

Figure 2: Dependence of the starting length, stL  a) on the 
cavity detuning : 1 for dispersive parameter .3 , and 
2 for the absence of dispersion and b) on the 
dimensionless electron bunch duration .cT

Note that wave dispersion, playing a part of feedback, 
allows FEL to generate even in the case of negative 
values of the cavity detuning ( , see Fig. 2a, curve 
1), for which the resonator can not be excited in the 
absence of dispersion (see Fig. 2a, curve 2). The 
increasing of the electron bunch duration leads to the 
decrease of the generation threshold (see Fig. 2b). For 
long electron bunch duration  this value as well as the 
cavity detuning does not practically influence the 
generation threshold. 

0<

cT

COMPUTER SIMULATION OF THE 
NONLINEAR STAGE 

The nonlinear stage of the electron-wave interaction 
was analyzed on the basis of computer simulation of Eqs. 
5. The electron bunch profile has a rectangular form with 
normalized duration . Three basic regimes of the FEL 
generation have been observed when the value of current 
exceeds the generation threshold: a) stationary regime 
(see Fig. 3), b) periodic self-modulation (see Fig. 4a), c) 
chaotic self-modulation (see Fig. 4b). 

cT

At a small excess over the generation threshold, a profile 
of the field and its spatial spectrum are closed to those 
found from the linear analysis (see Fig.1). The dynamics 
of electromagnetic pulse profile become more 
complicated with increasing the dimensionless resonator 
length, L  (see Fig.3). 

Figure 3: Regime of the stationary generation: 4.4L ,
,T=25.6 0.5 , 4cT , 0.3 ,: a) time–space 

evolution of an envelope of the electromagnetic pulse; b) 
time dependence of the electromagnetic pulse energy W :
for comparison the case of the absence of dispersion is 
shown by curve 2. 

Figure 4:Time–space evolutions of an envelope of 
electromagnetic pulse in the regime of periodical (a) 
( 4.4L , , T=25.6 4 , , 4cT 1) and chaotic 
self-modulation (b) ( 10L , T= ,51.2 1, 6cT ,

1).

The self-modulation regime may be reached by two 
ways: via increasing the dimensionless length L  and/or 
via enlarging the cavity detuning . Possible quasi-
periodical behavior is demonstrated in Fig. 4a. 

At large excess over the generation threshold, the 
chaotic regime of generation takes place (see Fig. 4b). At 
extremely large excess over the generation threshold, the 
pulse envelope evolves in a complicated stochastic 
manner, so that the generated radiation is distributed 
quasi-homogeneously over very wide spectral range of 
the resonator eigenmodes. According to estimates all 
these regimes are reasonable for the waveguide FEL to 
provide variety of applications (see Fig.5). 
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Figure 5: Zones of stationary (1), periodical (2) and 
chaotic (3) generation on the plane of dimensionless 
length L  and cavity detuning  for 1, 4cT ,

. Zone (4) is absence of generation. 51.2T

The stationary regime, when one supermode is 
generated, has been investigated in detail for various 
parameters of dispersion, the detuning of “zero-slippage” 
conditions and cavity detuning. At the limit 0  and 

0  the equations (5) transform into the equations for 
the case of group synchronism [5, 6, 10]. Numerical 
simulation of the equations (5) at small values of the 
parameter , allows us to determine an optimal relation 
between all FEL parameters, , L ,  and Tc , which 
gives the maximum field amplitude, i.e., provides the 
most effective interaction between the electromagnetic 
pulse and the electron bunches.  

Note also that a superradiant (nonstationary) type of 
operation regime [11] can be realized for small negative 
cavity detuning  (see Fig. 6).

Figure 6: Superradiant operation 
regime: , ,4.4L T=51.2 0.5 , ,16cT 0.3 ,: a) 
time–space evolution of an envelope of the 
electromagnetic pulse; b) time dependence of the field 
energy.

CONCLUSION 
In conclusion, we develop both linear and nonlinear 

theory to describe regimes of operation of the waveguide 
FELs with finite detuning of “zero-slippage” condition 
and cavity detuning.  

On the base carried out theoretical analyze it were 
estimated parameters of generated radiation for KAERI 
THz FEL ( 100 m ) [7, 8]. The experiments were 
done for an electron bunche of duration 30p ps, an 
electron current  A, particle energy MeV, the 
undulator period 

0.5 6.5
25u mm, the undulator length 2 m, 

amplitude of undulator field kG, transverse sizes of 
the plane waveguide 

6
30d mm, mm, resonator 

losses  Above physical parameters corresponds to 
dimensionless ones of length of interaction 

2b
10%

7L . From 
simulations the duration of electromagnetic micropulse 
is ps (relative spectrum width ) and peak 
power 30kW. The value of spectrum width corresponds to 
experimental date, but experimental value of peak power 
is much less the theoretical limit that in particular can be 
explained by the parameter spread in the real electron 
bunches. 
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