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Abstract 
We present further developments to the theory of 

Smith-Purcell free-electron lasers [1] (SPFELs) and 
characterization of a blunt needle cathode electron source 
in use to test the theory.  The theory of SPFELs has been 
refined to include the effects of resistive losses on the 
evanescent surface wave supported by the grating and 
reflections of the wave from the ends of the grating.  
Losses are included directly in the grating dispersion 
relation and the reflections appear in the boundary 
conditions for the growing wave.  Based on earlier work 
in sharp needle cathodes [2,3], an yttrium metal blunt 
needle cathode has been developed for the purpose of 
driving a SPFEL device.  Space charge expansion of the 
beam in the transverse direction and aberration in the 
electron optics place limitations on the useful beam that 
can be generated.  Both experimental and simple 
analytical characterizations of these limitations are 
presented and considered in light of the requirements of 
the SPFEL. 

SPFEL THEORY 
Smith-Purcell (SP) radiation is generated when an 

electron beam passes close to a grating.  The virtual 
photons of the field of the electrons are scattered by the 
grating, and the wavelength SPλ  observed at an angle θ  
is 
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where L  is the grating period, m  is the diffraction order, 
cβ  is the electron velocity, and c  is the speed of light.  

The angular spectral fluence of this radiation is described 
by several authors [4,5,6].  The intensity of the SP 
radiation falls off exponentially with the distance between 
the beam and the grating, with a characteristic length 
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where γ  is the Lorentz factor for the electron beam [6]. 

When the electron beam current over the grating is 
sufficiently high, the interaction between the electrons 
and the fields above the grating becomes nonlinear, and 
the electrons become bunched.  Periodic bunching of the 
electron beam intensifies the SP spectrum coherently [7].  
Nonlinear emission with increasing beam current has been 
observed at Dartmouth College using a modified scanning 
electron microscope as a beam source [8,9]. 

The interaction between the electron beam and the 
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Figure 1. Grating dispersion relation showing 
synchronous solution 

fields above the grating is significant only for a grating 
surface wave whose phase velocity is equal to the electron 
velocity.  The dispersion relation for a lamellar grating 
without external mirrors has been calculated by matching 
the boundary conditions for fields inside the grooves of 
the grating to a set of Floquet modes above the grating 
[10]. 

The electron beam is synchronous with a single 
evanescent mode of the grating, as shown in Fig. 1.  The 
evanescent mode does not itself radiate except by 
scattering at the ends of the grating, and the wavelength of 
the mode is always longer than the lowest-order SP band.  
The SP radiation spectrum is coherently enhanced, 
however, at harmonics of the bunching frequency dictated 
by the wavelength of the synchronous evanescent wave. 

The group velocity (the slope of the dispersion relation) 
at the synchronous point can be positive or negative, 
depending on the electron beam energy.  The energy flow 
in the evanescent wave, therefore, can be copropagating 
or counterpropagating with respect to the electron beam.  
At high electron energy, the energy flow is copropagating, 
and the device operates on a convective instability as does 
a traveling wave tube amplifier.  At low electron energy, 
the energy flow is counterpropagating and the device 
operates on an absolute instability in the manner of a 
backward wave oscillator.  In the oscillator case, feedback 
is provided by the backward moving wave even in the 
absence of mirrors.  At some intermediate energy, the 
synchronous point on the dispersion relation coincides 
with the Bragg point, where the group velocity gv  

vanishes. 
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EFFECT OF LOSSES 
The gain coefficient for the evanescent wave in either 

the amplifier or oscillator regime can be calculated by 
expanding the grating dispersion relation around the 
synchronous point.  A dimensionless expression for this 
expansion (without losses) is 

 ( ) ( )2

gv k c kδω δ δω β δ− − = Δ  (3) 

where δω  is the frequency deviation from the 
synchronous point, gv  is the group velocity, kδ  is the 

wavenumber deviation, and 

 
2

3

pGω
γ

Δ =  (4) 

where G  is a constant that depends on the grating profile.  

The gain coefficient of the device varies as 
1 3

gv
−

, which 

diverges near the Bragg point.  However, the resistive 
losses in the grating have an attenuation coefficient that 

varies as 
1

gv
−

, which diverges at the same point [1]. 

Resistive losses also introduce a real phase change.  To 
see this, we consider a short section of grating as a 
resonant cavity by imagining perfect reflectors at each 
end.  Small resistive losses in the grating surface then 
introduce a frequency shift given by 
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where 1i = − , Q  is the power loss into the grating 

resistance, U the energy density in the surface wave, and 
the angled brackets represent averages over one period of 
the grating and one cycle of the wave [11].  The correct 
dispersion relation with losses is therefore 
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EFFECT OF REFLECTIONS 
Equation 6 admits three solutions: a grating structure 

wave and so-called fast and slow space-charge waves.  
The three waves are locked together in frequency to form 
a single mode, but have slightly different wavenumbers 
and correspond to very different plasma dielectric 
susceptibilities.  Interference allows the waves to satisfy 
boundary conditions at the ends of the grating.  At the 
upstream end of the grating, the electron beam enters with 
uniform distributions of both density and velocity.  In the 
absence of reflections, the electric field vanishes at the 
downstream end.  These three boundary conditions are 
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Figure 2. Effect of reflections on the start current as a 
function of beam voltage 

where the index j  represents the three different solutions 

of the dispersion relation expansion, jA  is the relative  

amplitude of the three waves, and Z  is the length of the 
grating [1]. 

These boundary conditions can be refined to include 
reflections from the ends of the grating and losses in the 
reflected wave.  When this is done, the last boundary 
condition becomes 
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R  is the (complex) round-trip reflection coefficient, and 
2 gU v Qν =  is the empty grating loss coefficient.  

The boundary conditions are solved with the dispersion 
relation as a constraint.  The effect of the reflection 
coefficient is to increase or decrease the computed growth 
rate according to whether the phase shift on reflection 
leads to constructive or deconstructive interference with 
the backward waves.  The start condition for oscillation is 
that the growth rate, the imaginary part of the frequency, 
be positive.  Details on the calculation of reflection at the 
grating ends and the inclusion of losses in the grating 
dispersion relation can be found elsewhere [12]. 

The condition for oscillation can be expressed as a start 
current.  Figure 2 shows start current as a function of 
voltage for the parameters of the Dartmouth experiments 
[8].  The interference effects resulting from a nonzero 
reflection coefficient are clearly observed.  The observed 
start current is on the order of 1 mA, in agreement with 
the experiments.  However, the two-dimensional theory 
described here should underestimate the start current.  We 
expect the diffraction width of the mode on the grating to 

be on the order of / 1 mmg kΖ ≈ , where gZ  is the gain 

length of the evanescent wave, and k  is the wavenumber 
at the operating point.  This width is much greater than  
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Figure 3. Schematic of electron source and 
focusing/steering magnets  

the transverse size of the electron beam, thus reducing the 
effective interaction and raising the start current. 

BLUNT NEEDLE CATHODES 
The short vertical coupling length h  between the 

electron beam and the grating makes necessary a high-
brightness electron source for a SPFEL device.  Sharp 
needle cathodes made of tungsten have been investigated 
as high-brightness electron sources [2,3].  The 
photoelectric quantum efficiency of photoemission from 
the tungsten metal is enhanced by several orders of 
magnitude at the high surface electric fields (up to 1010 
V/m) that can be obtained at the 1 μm-radius tip of a 
chemically etched tungsten needle.  At these fields, the 
Schottky effect reduces the barrier for electron emission 
by as much as 2.5 eV.  The electron beams created from 
these sharp tips are highly divergent and difficult to focus. 

A less divergent electron beam can be obtained from a 
blunt needle cathode with a tip radius on the order of 1 
mm.  The surface field is reduced to 107 V/m, but the loss 
in quantum efficiency can be mitigated by changing the 
needle material from tungsten to yttrium.  Yttrium has a 
lower work function than tungsten (2.9 eV compared to 
4.5 eV), so a reduction of the barrier by the Schottky 
effect is not necessary to enhance the quantum efficiency.  
At 107 V/m, for example, the Schottky effect is only 0.1 
eV, but the effective work function of an yttrium cathode 
is similar to a tungsten cathode at 109 V/m. 

The needle-cathode device at Vanderbilt University 
uses an yttrium cathode with a 700 μm≈  radius spherical 

tip at the end of a 10 mm long square rod.  Removal of 
adsorbate molecules from the yttrium surface is critically 
important to the quantum efficiency of the cathode.  We 
use electron bombardment to raise the surface of the metal 
to its melting point (1800 K) for several seconds to 
produce a clean, smooth surface.  The partially-covered 
cathode is held at a positive potential of 2-3 kV, and 
bombarding electrons are provided by a tungsten ion 
gauge filament positioned close to the cathode.  The 
heating process is unstable when both the filament and the  
cathode tip are hot.  Yttrium deposited on the tungsten 
filament lowers its work function, increasing the 
thermionic emission. 
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Figure 4. Current detected at the phosphor screen as a 
function of total needle current 

After cleaning, the cathode is illuminated with a 
quintupled Nd:YAG laser (4-ns pulses at 20 Hz, <1 μJ per 
pulse, 5.9 eV per photon).  Peak currents of 50 mA are 
produced reliably, corresponding to a QE of ~10-3.  The 
laser is focused on the cathode with a spot radius of 20 
μm to give a current density at the source of 

7 210  A/meJ ≈ .  For an electron temperature 1 eVeT ≈ , 
the normalized brightness of the source is 
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where em  is the electron mass and Bk  is the Boltzmann 
constant [13]. 

A schematic of the experiment is shown in Fig. 3.  A 
conical anode allows the ultraviolet laser light to enter the 
chamber from the side and be reflected by a mirror to the 
needle tip.  The electron beam is focused by a 500-turn 
solenoid in an iron yoke designed to minimize the 
effective needle-lens distance, and therefore, the size of 
the beam in the lens.  Steering coils direct the beam past 
an aluminum grating to a phosphor screen, which also 
serves as a Faraday cup.  A fused quartz window above 
the grating allows millimeter-wave radiation to be 
collected by a He-cooled InSb bolometer.  SP radiation 
above the bolometer noise level has yet to be detected. 

The usable beam current from the needle cathode is 
limited by the fraction of the beam that can be collected 
and focused.  Space-charge forces play a significant role 
in the divergence of the beam at the source, and the usable 
beam current increases sublinearly with total needle 
current at high laser intensities, as shown in Fig. 4.  The 
importance of the space-charge effect is somewhat less at 
higher accelerating voltages.  At 60 kV, with laser power 
at the needle damage threshold, 5 mA (about 10%) of the 
total beam current reaches the phosphor screen. 

The spot size of the electron beam at the grating can be 
affected by aberration in the solenoid focusing magnet, 
beam emittance, and space charge at the beam focus [13].  
The generalized perveance for a uniform round beam is 
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Figure 5. Transverse beam profiles show the effect of 
spherical aberration upstream of the electron focus 

where I  is the current in the beam, 3
0 04 e eI m c qπε= , 0ε  

is the vacuum permittivity, and eq  is the electron charge.  
In terms of the generalized perveance, the space-charge 
dominated beam radius is 
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where A  is the beam aperture at the lens and α  is the 
convergence angle.  The space-charge limitation on the 
focal spot for the Vanderbilt device is less than 1 μm. 

The calculated brightness of the yttrium blunt needle 
source corresponds to an emittance of 710  mε −≈  for 5 
mA current at the grating.  The limitation posed by the 
emittance on the spot size at the focal point is 

 r
ε
α

=  (16) 

which corresponds to a 10 μm spot above the grating. 
The limitation on the spot size resulting from spherical 

aberration in the focusing solenoid is independent of the 
beam current.  Expanding the magnetic field near the axis 
and keeping terms up to third order in the transverse 
distance from the axis gives a radial dependence on the 
focal length of the solenoid (spherical aberration) 
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where zB  is the axial magnetic field and r  is the 
transverse distance from the axis.  The dependence of 
focal length on the transverse position of electrons 
entering the solenoid produces a spot size (at the circle of 
least confusion) of 
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where 0f  is the paraxial focus of the lens.  The 
aberration-limited spot size varies with the cube of the 
aperture size at the final lens.  For the Vanderbilt 
experiment, this spot size is 125 μm at 60 kV and 
represents the dominant contribution to the radius of the 
beam at the circle of least confusion. 

The size of the electron beam is measured by scanning 
the beam across a knife edge or by analyzing images of 
the phosphor screen.  Images of the screen are captured 

with a CCD camera and provide differential current 
density across the beam.  By changing the solenoid field 
strength, the beam is scanned through its focus.  The 
effects of spherical aberration are observed clearly as an 
intense beam edge upstream of the electron focus.  
Several transverse current profiles at different lens 
strengths appear in Fig. 5.  The measured radius at the 
beam waist is 200 μm, dominated by spherical aberration. 

CONCLUSIONS 
Detailed effects of losses and reflections have been 

incorporated into the theory of SPFELs.  The modified 
dispersion relation for the grating evanescent wave gives 
both the attenuation and phase shift due to resistive losses.  
The effects of reflection at the grating ends are accounted 
for in the boundary conditions on the three waves that 
comprise the grating mode.  The start current calculated in 
this way agrees with the Dartmouth experiments, though 
the two-dimensional treatment neglects diffraction of the 
evanescent mode in the transverse direction, which should 
increase the start current. 

Experiments are underway using the yttrium cathode 
device at Vanderbilt to drive the oscillator-regime 
operation of a SPFEL.  Spherical aberration limits the 
spot size of the electron beam in the Vanderbilt device, 
reducing the effective current interacting with the 
evanescent wave.  Aperturing the beam to reduce 
spherical aberration also reduces the fraction of total 
needle current to the grating. 
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